Recipes for Mastering Python 3

Pythori «
Cookbook

O’REILLY"® David Beazley & Brian K. Jones

9

Programming Languages/Python

Python Cookbook

If you need help writing programs in Python 3, or want to update
older Python 2 code, this book is just the ticket. Packed with
practical recipes written and tested with Python 3.3, this unique
cookbook is for experienced Python programmers who want to
focus on modern tools and idioms.

Inside, you'll find complete recipes for more than a dozen topics,
covering the core Python language as well as tasks common to a
wide variety of application domains. Each recipe contains code
samples you can use in your projects right away, along with a
discussion about how and why the solution works.

Topics include:

Data Structures and Algorithms
Strings and Text

Numbers, Dates, and Times
Iterators and Generators

Filesand I/0

Data Encoding and Processing
Functions

Classes and Objects
Metaprogramming

Modules and Packages

Network and Web Programming
Concurrency

Utility Scripting and System Administration
Testing, Debugging, and Exceptions

C Extensions

David Beazley, an independent
software developer, teaches
programming courses for
developers, scientists, and
engineers. He’s the author of
the Python Essential Reference
(Addison-Wesley), and has
created several open-source
Python packages.

Brian K. Jones is a system
administrator in the
Department of Computer
Science at Princeton
University.

US $49.99 CAN $52.99
ISBN: 978-1-449-34037-7

VRN o
ALLLUCI T

81449

Twitter: @oreillymedia
facebook.com/oreilly

O’REILLY"

oreilly.com

THIRD EDITION

Python Cookbook

David Beazley and Brian K. Jones

O’REILLY"

Beijing - Cambridge - Farnham - Kéln - Sebastopol - Tokyo

Python Cookbook, Third Edition
by David Beazley and Brian K. Jones

Copyright © 2013 David Beazley and Brian Jones. All rights reserved.
Printed in the United States of America.
Published by O’'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Meghan Blanchette and Rachel Roumeliotis Indexer: WordCo Indexing Services

Production Editor: Kristen Borg Cover Designer: Karen Montgomery
Copyeditor: Jasmine Kwityn Interior Designer: David Futato
Proofreader: BIM Proofreading Services lllustrator: Robert Romano

May 2013: Third Edition

Revision History for the Third Edition:
2013-05-08: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449340377 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O'Reilly
Media, Inc. Python Cookbook, the image of a springhaas, and related trade dress are trademarks of O’Reilly
Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trade-
mark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

ISBN: 978-1-449-34037-7
[LSI]

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449340377

Preface

1. Data Structures and Algorithms

1.1.
1.2.
1.3.
1.4.
1.5.
1.6.
1.7.
1.8.
1.9.

1.10.
1.11.
1.12.
1.13.

Table of Contents

Unpacking a Sequence into Separate Variables

Unpacking Elements from Iterables of Arbitrary Length

Keeping the Last N Items

Finding the Largest or Smallest N Items

Implementing a Priority Queue

Mapping Keys to Multiple Values in a Dictionary

Keeping Dictionaries in Order

Calculating with Dictionaries

Finding Commonalities in Two Dictionaries

Removing Duplicates from a Sequence while Maintaining Order
Naming a Slice

Determining the Most Frequently Occurring Items in a Sequence
Sorting a List of Dictionaries by a Common Key

1.14. Sorting Objects Without Native Comparison Support

1.15.

Grouping Records Together Based on a Field

1.16. Filtering Sequence Elements
1.17. Extracting a Subset of a Dictionary

1.18.
1.19.
1.20.

2. Strings and Text

2.1.
2.2.
2.3.
2.4.

Mapping Names to Sequence Elements
Transforming and Reducing Data at the Same Time
Combining Multiple Mappings into a Single Mapping

Splitting Strings on Any of Multiple Delimiters
Matching Text at the Start or End of a String
Matching Strings Using Shell Wildcard Patterns
Matching and Searching for Text Patterns

= 00 N Ul LW~

13
15
17
18
20
21
23
24
26
28
29
32
33

37
37
38
40
42

2.5. Searching and Replacing Text 45

2.6. Searching and Replacing Case-Insensitive Text 46
2.7. Specifying a Regular Expression for the Shortest Match 47
2.8. Writing a Regular Expression for Multiline Patterns 48
2.9. Normalizing Unicode Text to a Standard Representation 50
2.10. Working with Unicode Characters in Regular Expressions 52
2.11. Stripping Unwanted Characters from Strings 53
2.12. Sanitizing and Cleaning Up Text 54
2.13. Aligning Text Strings 57
2.14. Combining and Concatenating Strings 58
2.15. Interpolating Variables in Strings 61
2.16. Reformatting Text to a Fixed Number of Columns 64
2.17. Handling HTML and XML Entities in Text 65
2.18. Tokenizing Text 66
2.19. Writing a Simple Recursive Descent Parser 69
2.20. Performing Text Operations on Byte Strings 78
3. Numbers, Dates, and TIMeS. . .o.vvvvrtnenrit ittt iireneneneenenenrenenennes 83
3.1. Rounding Numerical Values 83
3.2. Performing Accurate Decimal Calculations 84
3.3. Formatting Numbers for Output 87
3.4. Working with Binary, Octal, and Hexadecimal Integers 89
3.5. Packing and Unpacking Large Integers from Bytes 90
3.6. Performing Complex-Valued Math 92
3.7. Working with Infinity and NaNs 94
3.8. Calculating with Fractions 96
3.9. Calculating with Large Numerical Arrays 97
3.10. Performing Matrix and Linear Algebra Calculations 100
3.11. Picking Things at Random 102
3.12. Converting Days to Seconds, and Other Basic Time Conversions 104
3.13. Determining Last Friday’s Date 106
3.14. Finding the Date Range for the Current Month 107
3.15. Converting Strings into Datetimes 109
3.16. Manipulating Dates Involving Time Zones 110
4. lteratorsand GENerators............cceeveiiiiiiiiiiiiiiiee i, 113
4.1. Manually Consuming an Iterator 113
4.2. Delegating Iteration 114
4.3. Creating New Iteration Patterns with Generators 115
4.4. Implementing the Iterator Protocol 117
4.5. Iterating in Reverse 119
4.6. Defining Generator Functions with Extra State 120

iv | Tableof Contents

4.7. Taking a Slice of an Iterator

4.8. Skipping the First Part of an Iterable

4.9. Tterating Over All Possible Combinations or Permutations
4.10. Iterating Over the Index-Value Pairs of a Sequence

4.11. Tterating Over Multiple Sequences Simultaneously

4.12. Iterating on Items in Separate Containers

4.13. Creating Data Processing Pipelines

4.14. Flattening a Nested Sequence

4.15. Iterating in Sorted Order Over Merged Sorted Iterables
4.16. Replacing Infinite while Loops with an Iterator

CFilesand 1/0. . ..o
5.1. Reading and Writing Text Data

5.2. Printing to a File

5.3. Printing with a Different Separator or Line Ending

5.4. Reading and Writing Binary Data

5.5. Writing to a File That Doesn’t Already Exist

5.6. Performing I/O Operations on a String

5.7. Reading and Writing Compressed Datafiles

5.8. Iterating Over Fixed-Sized Records

5.9. Reading Binary Data into a Mutable Buffer

5.10. Memory Mapping Binary Files

5.11. Manipulating Pathnames

5.12. Testing for the Existence of a File

5.13. Getting a Directory Listing

5.14. Bypassing Filename Encoding

5.15. Printing Bad Filenames

5.16. Adding or Changing the Encoding of an Already Open File
5.17. Writing Bytes to a Text File

5.18. Wrapping an Existing File Descriptor As a File Object
5.19. Making Temporary Files and Directories

5.20. Communicating with Serial Ports

5.21. Serializing Python Objects

. DataEncoding and Processing.oeuueeenieenieeneennereneeenneennns
6.1. Reading and Writing CSV Data

6.2. Reading and Writing JSON Data

6.3. Parsing Simple XML Data

6.4. Parsing Huge XML Files Incrementally

6.5. Turning a Dictionary into XML

6.6. Parsing, Modifying, and Rewriting XML

6.7. Parsing XML Documents with Namespaces

122
123
125
127
129
131
132
135
136
138

141
141
144
144
145
147
148
149
151
152
153
156
157
158
160
161
163
165
166
167
170
171

175
175
179
183
186
189
191
193

Table of Contents

6.8.
6.9.
6.10
6.11
6.12
6.13

7. Functions

7.1.
7.2.
7.3.
7.4.
7.5.
7.6.
7.7.
7.8.

Interacting with a Relational Database

Decoding and Encoding Hexadecimal Digits

. Decoding and Encoding Base64

. Reading and Writing Binary Arrays of Structures

. Reading Nested and Variable-Sized Binary Structures
. Summarizing Data and Performing Statistics

Writing Functions That Accept Any Number of Arguments
Writing Functions That Only Accept Keyword Arguments

Attaching Informational Metadata to Function Arguments

Returning Multiple Values from a Function

Defining Functions with Default Arguments

Defining Anonymous or Inline Functions

Capturing Variables in Anonymous Functions

Making an N-Argument Callable Work As a Callable with Fewer

Arguments

7.9.

7.10
7.11
7.12

8. (Classes and Objects

8.1.
8.2.
8.3.
8.4.
8.5.
8.6.
8.7.
8.8.
8.9.

8.10.
8.11.
8.12.
8.13.
8.14.
8.15.
8.16.
8.17.
8.18.
8.19.

Replacing Single Method Classes with Functions
. Carrying Extra State with Callback Functions

. Inlining Callback Functions

. Accessing Variables Defined Inside a Closure

Changing the String Representation of Instances
Customizing String Formatting

Making Objects Support the Context-Management Protocol
Saving Memory When Creating a Large Number of Instances
Encapsulating Names in a Class

Creating Managed Attributes

Calling a Method on a Parent Class

Extending a Property in a Subclass

Creating a New Kind of Class or Instance Attribute

Using Lazily Computed Properties

Simplifying the Initialization of Data Structures

Defining an Interface or Abstract Base Class

Implementing a Data Model or Type System
Implementing Custom Containers

Delegating Attribute Access

Defining More Than One Constructor in a Class

Creating an Instance Without Invoking init

Extending Classes with Mixins

Implementing Stateful Objects or State Machines

195
197
199
199
203
214

217
217
219
220
221
222
224
225

227
231
232
235
238

243
243
245
246
248
250
251
256
260
264
267
270
274
277
283
287
291
293
294
299

vi | Ta

ble of Contents

10.

8.20. Calling a Method on an Object Given the Name As a String
8.21. Implementing the Visitor Pattern

8.22. Implementing the Visitor Pattern Without Recursion

8.23. Managing Memory in Cyclic Data Structures

8.24. Making Classes Support Comparison Operations

8.25. Creating Cached Instances

. Metaprogramming.........ocuiiuiiiniiiiiiiiiiiiiiiiiiiiii i

9.1. Putting a Wrapper Around a Function

9.2. Preserving Function Metadata When Writing Decorators
9.3. Unwrapping a Decorator

9.4. Defining a Decorator That Takes Arguments

9.5. Defining a Decorator with User Adjustable Attributes

9.6. Defining a Decorator That Takes an Optional Argument
9.7. Enforcing Type Checking on a Function Using a Decorator
9.8. Defining Decorators As Part of a Class

9.9. Defining Decorators As Classes

9.10. Applying Decorators to Class and Static Methods

9.11. Writing Decorators That Add Arguments to Wrapped Functions
9.12. Using Decorators to Patch Class Definitions

9.13. Using a Metaclass to Control Instance Creation

9.14. Capturing Class Attribute Definition Order

9.15. Defining a Metaclass That Takes Optional Arguments
9.16. Enforcing an Argument Signature on *args and **kwargs
9.17. Enforcing Coding Conventions in Classes

9.18. Defining Classes Programmatically

9.19. Initializing Class Members at Definition Time

9.20. Implementing Multiple Dispatch with Function Annotations
9.21. Avoiding Repetitive Property Methods

9.22. Defining Context Managers the Easy Way

9.23. Executing Code with Local Side Effects

9.24. Parsing and Analyzing Python Source

9.25. Disassembling Python Byte Code

Modules and Packages.covviiiriiiiiiiiiieiiiriiiieiiereieaenaens
10.1. Making a Hierarchical Package of Modules

10.2. Controlling the Import of Everything

10.3. Importing Package Submodules Using Relative Names

10.4. Splitting a Module into Multiple Files

10.5. Making Separate Directories of Code Import Under a Common
Namespace

10.6. Reloading Modules

305
306
311
317
321
323

329
329
331
333
334
336
339
341
345
347
350
352
355
356
359
362
364
367
370
374
376
382
384
386
388
392

397
397
398
399
401

404
406

Table of Contents

vii

10.7. Making a Directory or Zip File Runnable As a Main Script 407

10.8. Reading Datafiles Within a Package 408
10.9. Adding Directories to sys.path 409
10.10. Importing Modules Using a Name Given in a String 411
10.11. Loading Modules from a Remote Machine Using Import Hooks 412
10.12. Patching Modules on Import 428
10.13. Installing Packages Just for Yourself 431
10.14. Creating a New Python Environment 432
10.15. Distributing Packages 433
11. Network and Web Programming...........ccoeviniiiiiiiiiieinerenneennnnnns 437
11.1. Interacting with HTTP Services As a Client 437
11.2. Creating a TCP Server 441
11.3. Creating a UDP Server 445
11.4. Generating a Range of IP Addresses from a CIDR Address 447
11.5. Creating a Simple REST-Based Interface 449
11.6. Implementing a Simple Remote Procedure Call with XML-RPC 454
11.7. Communicating Simply Between Interpreters 456
11.8. Implementing Remote Procedure Calls 458
11.9. Authenticating Clients Simply 461
11.10. Adding SSL to Network Services 464
11.11. Passing a Socket File Descriptor Between Processes 470
11.12. Understanding Event-Driven I/O 475
11.13. Sending and Receiving Large Arrays 481
12, COMCUITENCY. « et ttteeeneeeueeenesenneennessnssanssonsssnnsssnsssnnsanns 485
12.1. Starting and Stopping Threads 485
12.2. Determining If a Thread Has Started 488
12.3. Communicating Between Threads 491
12.4. Locking Critical Sections 497
12.5. Locking with Deadlock Avoidance 500
12.6. Storing Thread-Specific State 504
12.7. Creating a Thread Pool 505
12.8. Performing Simple Parallel Programming 509
12.9. Dealing with the GIL (and How to Stop Worrying About It) 513
12.10. Defining an Actor Task 516
12.11. Implementing Publish/Subscribe Messaging 520
12.12. Using Generators As an Alternative to Threads 524
12.13. Polling Multiple Thread Queues 531
12.14. Launching a Daemon Process on Unix 534
13. Utility Scripting and System Administration..............ccooiiiiiiiiinnn., 539

vii | Table of Contents

13.1. Accepting Script Input via Redirection, Pipes, or Input Files
13.2. Terminating a Program with an Error Message

13.3. Parsing Command-Line Options

13.4. Prompting for a Password at Runtime

13.5. Getting the Terminal Size

13.6. Executing an External Command and Getting Its Output
13.7. Copying or Moving Files and Directories

13.8. Creating and Unpacking Archives

13.9. Finding Files by Name

13.10. Reading Configuration Files

13.11. Adding Logging to Simple Scripts

13.12. Adding Logging to Libraries

13.13. Making a Stopwatch Timer

13.14. Putting Limits on Memory and CPU Usage

13.15. Launching a Web Browser

14. Testing, Debugging, and Exceptions...........covviiiiiiiiiiiiiiiieenieennnns

15.

14.1. Testing Output Sent to stdout

14.2. Patching Objects in Unit Tests

14.3. Testing for Exceptional Conditions in Unit Tests
14.4. Logging Test Output to a File

14.5. Skipping or Anticipating Test Failures

14.6. Handling Multiple Exceptions

14.7. Catching All Exceptions

14.8. Creating Custom Exceptions

14.9. Raising an Exception in Response to Another Exception
14.10. Reraising the Last Exception

14.11. Issuing Warning Messages

14.12. Debugging Basic Program Crashes

14.13. Profiling and Timing Your Program

14.14. Making Your Programs Run Faster

CEXTENSIONS. ... eeeeee e
15.1. Accessing C Code Using ctypes

15.2. Writing a Simple C Extension Module

15.3. Writing an Extension Function That Operates on Arrays

15.4. Managing Opaque Pointers in C Extension Modules

15.5. Defining and Exporting C APIs from Extension Modules

15.6. Calling Python from C

15.7. Releasing the GIL in C Extensions

15.8. Mixing Threads from C and Python

15.9. Wrapping C Code with Swig

539
540
541
544
545
545
547
549
550
552
555
558
559
561
563

565
565
567
570
572
573
574
576
578
580
582
583
585
587
590

597
599
605
609
612
614
619
625
625
627

Table of Contents

A. Further Reading

15.10.
15.11.
15.12.
15.13.
15.14.
15.15.
15.16.
15.17.
15.18.
15.19.
15.20.
15.21.

Wrapping Existing C Code with Cython

Using Cython to Write High-Performance Array Operations
Turning a Function Pointer into a Callable
Passing NULL-Terminated Strings to C Libraries
Passing Unicode Strings to C Libraries
Converting C Strings to Python

Working with C Strings of Dubious Encoding
Passing Filenames to C Extensions

Passing Open Files to C Extensions

Reading File-Like Objects from C

Consuming an Iterable from C

Diagnosing Segmentation Faults

632
638
643
644
648
653
654
657
658
659
662
663

X

Table of Contents

Preface

Since 2008, the Python world has been watching the slow evolution of Python 3. It was
always known that the adoption of Python 3 would likely take a long time. In fact, even
at the time of this writing (2013), most working Python programmers continue to use
Python 2 in production. A lothas been made about the fact that Python 3 is not backward
compatible with past versions. To be sure, backward compatibility is an issue for anyone
with an existing code base. However, if you shift your view toward the future, you’ll find
that Python 3 offers much more than meets the eye.

Just as Python 3 is about the future, this edition of the Python Cookbook represents a
major change over past editions. First and foremost, this is meant to be a very forward
looking book. All of the recipes have been written and tested with Python 3.3 without
regard to past Python versions or the “old way” of doing things. In fact, many of the
recipes will only work with Python 3.3 and above. Doing so may be a calculated risk,
but the ultimate goal is to write a book of recipes based on the most modern tools and
idioms possible. It is hoped that the recipes can serve as a guide for people writing new
code in Python 3 or those who hope to modernize existing code.

Needless to say, writing a book of recipes in this style presents a certain editorial chal-
lenge. An online search for Python recipes returns literally thousands of useful recipes
on sites such as ActiveState’s Python recipes or Stack Overflow. However, most of these
recipes are steeped in history and the past. Besides being written almost exclusively for
Python 2, they often contain workarounds and hacks related to differences between old
versions of Python (e.g., version 2.3 versus 2.4). Moreover, they often use outdated
techniques that have simply become a built-in feature of Python 3.3. Finding recipes
exclusively focused on Python 3 can be a bit more difficult.

Rather than attempting to seek out Python 3-specific recipes, the topics of this book are
merely inspired by existing code and techniques. Using these ideas as a springboard,
the writing is an original work that has been deliberately written with the most modern
Python programming techniques possible. Thus, it can serve as a reference for anyone
who wants to write their code in a modern style.

Xi

http://code.activestate.com/recipes/langs/python
http://stackoverflow.com/questions/tagged/python

In choosing which recipes to include, there is a certain realization that it is simply
impossible to write a book that covers every possible thing that someone might do with
Python. Thus, a priority has been given to topics that focus on the core Python language
as well as tasks that are common to a wide variety of application domains. In addition,
many of the recipes aim to illustrate features that are new to Python 3 and more likely
to be unknown to even experienced programmers using older versions. There is also a
certain preference to recipes that illustrate a generally applicable programming tech-
nique (i.e., programming patterns) as opposed to those that narrowly try to address a
very specific practical problem. Although certain third-party packages get coverage, a
majority of the recipes focus on the core language and standard library.

Who This Book Is For

This book is aimed at more experienced Python programmers who are looking to
deepen their understanding of the language and modern programming idioms. Much
of the material focuses on some of the more advanced techniques used by libraries,
frameworks, and applications. Throughout the book, the recipes generally assume that
the reader already has the necessary background to understand the topic at hand (e.g.,
general knowledge of computer science, data structures, complexity, systems program-
ming, concurrency, C programming, etc.). Moreover, the recipes are often just skeletons
that aim to provide essential information for getting started, but which require the
reader to do more research to fill in the details. As such, it is assumed that the reader
knows how to use search engines and Python’s excellent online documentation.

Many of the more advanced recipes will reward the reader’s patience with a much greater
insight into how Python actually works under the covers. You will learn new tricks and
techniques that can be applied to your own code.

Who This Book Is Not For

This is not a book designed for beginners trying to learn Python for the first time. In
fact, it already assumes that you know the basics that might be taught in a Python tutorial
or more introductory book. This book is also not designed to serve as a quick reference
manual (e.g., quickly looking up the functions in a specific module). Instead, the book
aims to focus on specific programming topics, show possible solutions, and serve as a
springboard for jumping into more advanced material you might find online or in a
reference.

xii | Preface

Conventions Used in This Book

The following typographical conventions are used in this book:

Ttalic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

W 8
o)
A
N
' 4 S
W 3
(1N

This icon signifies a tip, suggestion, or general note.

\

This icon indicates a warning or caution.

=

Online Code Examples

Almost all of the code examples in this book are available online at http://github.com/
dabeaz/python-cookbook. The authors welcome bug fixes, improvements, and com-
ments.

Using Code Examples

This book is here to help you get your job done. In general, if this book includes code
examples, you may use the code in this book in your programs and documentation. You
do not need to contact us for permission unless you're reproducing a significant portion
of the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples from
O’Reilly books does require permission. Answering a question by citing this book and
quoting example code does not require permission. Incorporating a significant amount

Preface | xiii

http://github.com/dabeaz/python-cookbook
http://github.com/dabeaz/python-cookbook

of example code from this book into your product’s documentation does require per-
mission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: Python Cookbook, 3rd edition, by David
Beazley and Brian K. Jones (O'Reilly). Copyright 2013 David Beazley and Brian Jones,
978-1-449-34037-7.

If you feel your use of code examples falls outside fair use or the permission given here,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online

Safari Books Online is an on-demand digital library that delivers ex-
Safa Pl pert content in both book and video form from the world’s leading

BooksOnline guthors in technology and business.

Technology professionals, software developers, web designers, and business and crea-
tive professionals use Safari Books Online as their primary resource for research, prob-
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi-
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O'Reilly Media, Prentice Hall Professional, Addison-Wesley Pro-
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol-
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/python_cookbook_3e.

xiv | Preface

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://oreil.ly/python_cookbook_3e

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

We would like to acknowledge the technical reviewers, Jake Vanderplas, Robert Kern,
and Andrea Crotti, for their very helpful comments, as well as the general Python com-
munity for their support and encouragement. We would also like to thank the editors
of the prior edition, Alex Martelli, Anna Ravenscroft, and David Ascher. Although this
edition is newly written, the previous edition provided an initial framework for selecting
the topics and recipes of interest. Last, but not least, we would like to thank readers of
the early release editions for their comments and suggestions for improvement.

David Beazley’s Acknowledgments

Writing a book is no small task. As such, I would like to thank my wife Paula and my
two boys for their patience and support during this project. Much of the material in this
book was derived from content I developed teaching Python-related training classes
over the last six years. Thus, I'd like to thank all of the students who have taken my
courses and ultimately made this book possible. I'd also like to thank Ned Batchelder,
Travis Oliphant, Peter Wang, Brian Van de Ven, Hugo Shi, Raymond Hettinger, Michael
Foord, and Daniel Klein for traveling to the four corners of the world to teach these
courses while I stayed home in Chicago to work on this project. Meghan Blanchette and
Rachel Roumeliotis of O’Reilly were also instrumental in seeing this project through to
completion despite the drama of several false starts and unforeseen delays. Last, but not
least, I'd like to thank the Python community for their continued support and putting
up with my flights of diabolical fancy.

David M. Beazley
http://www.dabeaz.com

https://twitter.com/dabeaz

Preface | xv

mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://www.dabeaz.com
https://twitter.com/dabeaz

Brian Jones’ Acknowledgments

I would like to thank both my coauthor, David Beazley, as well as Meghan Blanchette
and Rachel Roumeliotis of O’Reilly, for working with me on this project. I would also
like to thank my amazing wife, Natasha, for her patience and encouragement in this
project, and her support in all of my ambitions. Most of all, I'd like to thank the Python
community at large. Though I have contributed to the support of various open source
projects, languages, clubs, and the like, no work has been so gratifying and rewarding
as that which has been in the service of the Python community.

Brian K. Jones
http://www.protocolostomy.com

https://twitter.com/bkjones

xvi | Preface

http://www.protocolostomy.com
https://twitter.com/bkjones

CHAPTER 1
Data Structures and Algorithms

Python provides a variety of useful built-in data structures, such as lists, sets, and dic-
tionaries. For the most part, the use of these structures is straightforward. However,
common questions concerning searching, sorting, ordering, and filtering often arise.
Thus, the goal of this chapter is to discuss common data structures and algorithms
involving data. In addition, treatment is given to the various data structures contained
in the collections module.

1.1. Unpacking a Sequence into Separate Variables

Problem

You have an N-element tuple or sequence that you would like to unpack into a collection
of N variables.

Solution

Any sequence (or iterable) can be unpacked into variables using a simple assignment
operation. The only requirement is that the number of variables and structure match
the sequence. For example:

>>> p = (4, 5)
>>> X, Yy = p
>5> X

4

>>> y

5

>>>

>>> data = ['ACME', 50, 91.1, (2012, 12, 21)]
>>> name, shares, price, date = data
>>> name

'ACME'
>>> date
(2012, 12, 21)

>>> name, shares, price, (year, mon, day) = data
>>> name

'ACME'

>>> year

2012

>>> Mmon

12

>>> day

21

>>>
If there is a mismatch in the number of elements, you’ll get an error. For example:

>>> p = (4, 5)
>>> X, ¥, Z =P

File "<stdin>", 1ine 1, in <module>
ValueError: need more than 2 values to unpack
>>>

Discussion

Unpacking actually works with any object that happens to be iterable, not just tuples or
lists. This includes strings, files, iterators, and generators. For example:

>>> s = 'Hello'
>>>a, b, c,d, e=s
>>> a

IHI

>>> b

'e
>>> e
'o
>>>

When unpacking, you may sometimes want to discard certain values. Python has no
special syntax for this, but you can often just pick a throwaway variable name for it. For
example:

>>> data = ['ACME', 50, 91.1, (2012, 12, 21)]
>>> _, shares, price, _ = data

>>> shares

50

>>> price

91.1

>>>

However, make sure that the variable name you pick isn't being used for something else
already.

2 | Chapter 1: Data Structures and Algorithms

1.2. Unpacking Elements from Iterables of Arbitrary
Length

Problem

You need to unpack N elements from an iterable, but the iterable may be longer than N
elements, causing a “too many values to unpack” exception.

Solution

Python “star expressions” can be used to address this problem. For example, suppose
you run a course and decide at the end of the semester that you're going to drop the first
and last homework grades, and only average the rest of them. If there are only four
assignments, maybe you simply unpack all four, but what if there are 24? A star expres-
sion makes it easy:

def drop_first_last(grades):
first, *middle, last = grades
return avg(middle)

As another use case, suppose you have user records that consist of a name and email
address, followed by an arbitrary number of phone numbers. You could unpack the
records like this:

>>> record = ('Dave', 'dave@example.com', '773-555-1212', '847-555-1212"')

>>> name, email, *phone_numbers = user_record

>>> name

'Dave’

>>> email

'dave@example.com’

>>> phone_numbers

['773-555-1212", '847-555-1212"]

>>>
It's worth noting that the phone_numbers variable will always be a list, regardless of how
many phone numbers are unpacked (including none). Thus, any code that uses
phone_numbers won't have to account for the possibility that it might not be a list or

perform any kind of additional type checking.

The starred variable can also be the first one in the list. For example, say you have a
sequence of values representing your company’s sales figures for the last eight quarters.
If you want to see how the most recent quarter stacks up to the average of the first seven,
you could do something like this:

*trailing_qtrs, current_qgtr = sales_record
trailing_avg = sum(trailing_qtrs) / len(trailing_qtrs)
return avg_comparison(trailing_avg, current_gtr)

Here’s a view of the operation from the Python interpreter:

1.2. Unpacking Elements from Iterables of Arbitrary Length | 3

>>> *trailing, current = [10, 8, 7, 1, 9, 5, 10, 3]
>>> trailing

[10, 8, 7, 1, 9, 5, 10]

>>> current

3

Discussion

Extended iterable unpacking is tailor-made for unpacking iterables of unknown or ar-
bitrary length. Oftentimes, these iterables have some known component or pattern in
their construction (e.g. “everything after element 1 is a phone number”), and star un-
packing lets the developer leverage those patterns easily instead of performing acro-
batics to get at the relevant elements in the iterable.

It is worth noting that the star syntax can be especially useful when iterating over a
sequence of tuples of varying length. For example, perhaps a sequence of tagged tuples:

records = [
('foo', 1, 2),
('bar', 'hello'),
('foo', 3, 4),

1

def do_foo(x, y):
print('foo', x, y)

def do_bar(s):
print('bar', s)

for tag, *args in records:

if tag == 'foo':
do_foo(*args)
elif tag == 'bar':

do_bar(*args)

Star unpacking can also be useful when combined with certain kinds of string processing
operations, such as splitting. For example:

>>> line = 'nobody:*:-2:-2:Unprivileged User:/var/empty:/usr/bin/false’
>>> uname, *fields, homedir, sh = line.split(':"')

>>> uname

'nobody'

>>> homedir

' [var/empty'

>>> sh

'Jusr/bin/false’

>>>

Sometimes you might want to unpack values and throw them away. You can't just specify
a bare * when unpacking, but you could use a common throwaway variable name, such
as _or ign (ignored). For example:

4 | Chapter 1: Data Structures and Algorithms

>>> record = ('ACME', 50, 123.45, (12, 18, 2012))
>>> name, *_, (*_, year) = record

>>> name

'ACME'

>>> year

2012

>>>

There is a certain similarity between star unpacking and list-processing features of var-
ious functional languages. For example, if you have a list, you can easily split it into head
and tail components like this:

>>> items = [1, 10, 7, 4, 5, 9]

>>> head, *tail = items

>>> head

1

>>> tail

[10: 7: 4: 5: 9]

>>>
One could imagine writing functions that perform such splitting in order to carry out
some kind of clever recursive algorithm. For example:

>>> def sum(items):
head, *tail = items
return head + sum(tail) if tail else head

>>> sum(items)
36

>>>

However, be aware that recursion really isn’t a strong Python feature due to the inherent
recursion limit. Thus, this last example might be nothing more than an academic cu-
riosity in practice.

1.3. Keeping the Last N Items

Problem

You want to keep a limited history of the last few items seen during iteration or during
some other kind of processing.

Solution

Keeping a limited history is a perfect use for a collections.deque. For example, the
following code performs a simple text match on a sequence of lines and yields the
matching line along with the previous N lines of context when found:

1.3.Keeping the LastNltems | 5

from collections import deque

def search(lines, pattern, history=5):
previous_lines = deque(maxlen=history)
for line in lines:
if pattern in line:
yield line, previous_lines
previous_lines.append(line)

Example use on a file
if __name__ == '__main_
with open('somefile.txt') as f:
for line, prevlines in search(f, 'python', 5):
for pline in prevlines:
print(pline, end="")
print(line, end="")
print('-'*20)

Discussion

When writing code to search for items, it is common to use a generator function in-
volving yield, asshown in this recipe’s solution. This decouples the process of searching
from the code that uses the results. If youre new to generators, see Recipe 4.3.

Using deque(maxlen=N) creates a fixed-sized queue. When new items are added and
the queue is full, the oldest item is automatically removed. For example:

>>> q = deque(maxlen=3)
>>> q.append(1)

>>> q.append(2)

>>> q.append(3)

>>> q

deque([1, 2, 3], maxlen=3)
>>> q.append(4)

>>> q

deque([2, 3, 4], maxlen=3)
>>> q.append(5)

>>> q

deque([3, 4, 5], maxlen=3)

Although you could manually perform such operations on a list (e.g., appending, de-
leting, etc.), the queue solution is far more elegant and runs a lot faster.

More generally, a deque can be used whenever you need a simple queue structure. If
you don’t give it a maximum size, you get an unbounded queue that lets you append
and pop items on either end. For example:

>>> q = deque()
>>> q.append(1)
>>> q.append(2)
>>> q.append(3)
>>> q

6 | Chapter 1: Data Structures and Algorithms

deque([1, 2, 3])

>>> q.appendleft(4)

>>> q

deque([4, 1, 2, 3])

>>> q.pop()

3

>>> q

deque([4, 1, 2])

>>> q.popleft()

4
Adding or popping items from either end of a queue has O(1) complexity. This is unlike
a list where inserting or removing items from the front of the list is O(N).

1.4. Finding the Largest or Smallest N Items

Problem

You want to make a list of the largest or smallest N items in a collection.

Solution

The heapg module has two functions—nlargest() and nsmallest()—that do exactly
what you want. For example:

import heapq

nums = [1, 8, 2, 23, 7, -4, 18, 23, 42, 37, 2]
print(heapq.nlargest(3, nums)) # Prints [42, 37, 23]
print(heapq.nsmallest(3, nums)) # Prints [-4, 1, 2]

Both functions also accept a key parameter that allows them to be used with more
complicated data structures. For example:

portfolio = [
{'name': 'IBM', 'shares': 100, 'price': 91.1},
{'name': 'AAPL', 'shares': 50, 'price': 543.22},
{'name': 'FB', 'shares': 200, 'price': 21.09},
{'name': 'HPQ', 'shares': 35, 'price': 31.75},
{'name': 'YHOO', 'shares': 45, 'price': 16.35},
{'name': 'ACME', 'shares': 75, 'price': 115.65}

1

cheap = heapqg.nsmallest(3, portfolio, key=lambda s: s['price'])
expensive = heapq.nlargest(3, portfolio, key=lambda s: s['price'])

Discussion

If you are looking for the N smallest or largest items and N is small compared to the
overall size of the collection, these functions provide superior performance. Underneath

1.4. Finding the Largest or Smallest N ltems | 7

the covers, they work by first converting the data into a list where items are ordered as
a heap. For example:

>>> nums = [1, 8, 2, 23, 7, -4, 18, 23, 42, 37, 2]
>>> import heapq

>>> heap = list(nums)

>>> heapq.heapify(heap)

>>> heap

[-4, 2, 1, 23, 7, 2, 18, 23, 42, 37, 8]

>>>
The most important feature of a heap is that heap[0] is always the smallest item. More-
over, subsequent items can be easily found using the heapq.heappop() method, which
pops off the first item and replaces it with the next smallest item (an operation that

requires O(log N) operations where N is the size of the heap). For example, to find the
three smallest items, you would do this:

>>> heapq.heappop(heap)
-4

>>> heapq.heappop(heap)
1

>>> heapq.heappop(heap)
2

The nlargest() and nsmallest() functions are most appropriate if you are trying to
find a relatively small number of items. If you are simply trying to find the single smallest
or largest item (N=1), it is faster to use min() and max(). Similarly, if N is about the
same size as the collection itself, it is usually faster to sort it first and take a slice (i.e.,
use sorted(items)[:N] or sorted(items)[-N:]). It should be noted that the actual
implementation of nlargest() and nsmallest() is adaptive in how it operates and will
carry out some of these optimizations on your behalf (e.g., using sorting if N is close to
the same size as the input).

Although it’s not necessary to use this recipe, the implementation of a heap is an inter-
esting and worthwhile subject of study. This can usually be found in any decent book
on algorithms and data structures. The documentation for the heapq module also dis-
cusses the underlying implementation details.

1.5. Implementing a Priority Queue

Problem

You want to implement a queue that sorts items by a given priority and always returns
the item with the highest priority on each pop operation.

8 | Chapter 1: Data Structures and Algorithms

Solution

The following class uses the heapg module to implement a simple priority queue:

import heapq

class PriorityQueue:
def __init__(self):
self._queue = []
self._index = 0

def push(self, item, priority):
heapg.heappush(self._queue, (-priority, self._index, item))
self._index += 1

def pop(self):
return heapq.heappop(self._gueue)[-1]

Here is an example of how it might be used:

>>> class Item:
def __init__(self, name):
self.name = name
def _ repr__(self):
return 'Item({!r})'.format(self.name)

>>> q = PriorityQueue()

>>> q.push(Item('foo'), 1)
>>> q.push(Item('bar'), 5)
>>> q.push(Item('spam'), 4)
>>> q.push(Item('grok'), 1)
>>> q.pop()

Item('bar')

>>> q.pop()

Item('spam')

>>> q.pop()

Item('foo')

>>> q.pop()

Item('grok')

>>>
Observe how the first pop() operation returned the item with the highest priority. Also

observe how the two items with the same priority (foo and grok) were returned in the
same order in which they were inserted into the queue.

Discussion

The core of this recipe concerns the use of the heapg module. The functions heapq. heap
push() and heapq.heappop() insert and remove items from a list _queue in a way such
that the first item in the list has the smallest priority (as discussed in Recipe 1.4). The
heappop() method always returns the “smallest” item, so that is the key to making the

1.5. Implementing a Priority Queue | 9

queue pop the correct items. Moreover, since the push and pop operations have O(log
N) complexity where N is the number of items in the heap, they are fairly efficient even
for fairly large values of N.

In this recipe, the queue consists of tuples of the form (-priority, index, item).The
priority value is negated to get the queue to sort items from highest priority to lowest
priority. This is opposite of the normal heap ordering, which sorts from lowest to highest
value.

The role of the index variable is to properly order items with the same priority level.
By keeping a constantly increasing index, the items will be sorted according to the order
in which they were inserted. However, the index also serves an important role in making
the comparison operations work for items that have the same priority level.

To elaborate on that, instances of Item in the example can’t be ordered. For example:

>>> a = Item('foo")
>>> b = Item('bar')
>>> a < b

File "<stdin>", line 1, in <module>
TypeError: unorderable types: Item() < Item()
>>>

If you make (priority, item) tuples, they can be compared as long as the priorities
are different. However, if two tuples with equal priorities are compared, the comparison
fails as before. For example:

>>> a = (1, Item('foo'))
>>> b = (5, Item('bar'))

>>> a<b
True
>>> ¢ = (1, Item('grok'))

>>> a < C

File "<stdin>", 1ine 1, in <module>
TypeError: unorderable types: Item() < Item()
>>>

Byintroducing the extraindexand making (priority, index, item)tuples,youavoid
this problem entirely since no two tuples will ever have the same value for index (and

Python never bothers to compare the remaining tuple values once the result of com-
parison can be determined):

>>> a = (1, 0, Item('foo'))
>>> b = (5, 1, Item('bar'))
>>> ¢ = (1, 2, Item('grok'))
>>>a<b

True

>>> a < C

10 | Chapter 1: Data Structures and Algorithms

True
>>>

If you want to use this queue for communication between threads, you need to add
appropriate locking and signaling. See Recipe 12.3 for an example of how to do this.

The documentation for the heapg module has further examples and discussion con-
cerning the theory and implementation of heaps.

1.6. Mapping Keys to Multiple Values in a Dictionary

Problem

You want to make a dictionary that maps keys to more than one value (a so-called
“multidict”).

Solution

A dictionary is a mapping where each key is mapped to a single value. If you want to
map keys to multiple values, you need to store the multiple values in another container
such as a list or set. For example, you might make dictionaries like this:

d={
'at ¢ [1, 2, 3],
'b" i [4, 5]

}

{
at s {1, 2, 3},
b' : {4, 5}

The choice of whether or not to use lists or sets depends on intended use. Use a list if
you want to preserve the insertion order of the items. Use a set if you want to eliminate
duplicates (and don't care about the order).

To easily construct such dictionaries, you can use defaultdict in the collections
module. A feature of defaultdict is that it automatically initializes the first value so
you can simply focus on adding items. For example:

from collections import defaultdict

d = defaultdict(list)
d['a'].append(1)
d['a'].append(2)
d['b'].append(4)

d = defaultdict(set)

1.6. Mapping Keys to Multiple Values in a Dictionary | 11

d['a'].add(1)
d['a'].add(2)
d['b'].add(4)

One caution with defaultdict is that it will automatically create dictionary entries for
keys accessed later on (even if they aren’t currently found in the dictionary). If you don't
want this behavior, you might use setdefault() on an ordinary dictionary instead. For
example:

d={} # A regular dictionary
d.setdefault('a', []).append(1)
d.setdefault('a', []).append(2)
d.setdefault('b', []).append(4)

However, many programmers find setdefault() to be a little unnatural—not to men-
tion the fact that it always creates a new instance of the initial value on each invocation
(the empty list [] in the example).

Discussion

In principle, constructing a multivalued dictionary is simple. However, initialization of
the first value can be messy if you try to do it yourself. For example, you might have
code that looks like this:
d={}
for key, value in pairs:
if key not in d:

d[key] = []
d[key].append(value)

Using a defaultdict simply leads to much cleaner code:

d = defaultdict(list)
for key, value in pairs:
d[key].append(value)

This recipe is strongly related to the problem of grouping records together in data pro-
cessing problems. See Recipe 1.15 for an example.

1.7. Keeping Dictionaries in Order

Problem

You want to create a dictionary, and you also want to control the order of items when
iterating or serializing.

12 | Chapter 1: Data Structures and Algorithms

Solution

To control the order of items in a dictionary, you can use an OrderedDict from the
collections module. It exactly preserves the original insertion order of data when
iterating. For example:

from collections import OrderedDict

d = OrderedDict()

d['foo'] = 1
d['bar'] = 2
d['spam'] = 3
d['grok'] = 4

Outputs "foo 1", "bar 2", "spam 3", "grok 4"
for key in d:
print(key, d[key])
An OrderedDict can be particularly useful when you want to build a mapping that you
may want to later serialize or encode into a different format. For example, if you want
to precisely control the order of fields appearing in a JSON encoding, first building the
data in an OrderedDict will do the trick:

>>> import json

>>> json.dumps(d)

'{"foo": 1, "bar": 2, "spam": 3, "grok": 4}'
>>>

Discussion

An OrderedDict internally maintains a doubly linked list that orders the keys according
to insertion order. When a new item is first inserted, it is placed at the end of this list.
Subsequent reassignment of an existing key doesn’t change the order.

Be aware that the size of an OrderedDict is more than twice as large as a normal dic-
tionary due to the extra linked list thats created. Thus, if you are going to build a data
structure involving a large number of OrderedDict instances (e.g., reading 100,000 lines
of a CSV file into a list of OrderedDict instances), you would need to study the re-
quirements of your application to determine if the benefits of using an OrderedDict
outweighed the extra memory overhead.

1.8. Calculating with Dictionaries

Problem

You want to perform various calculations (e.g., minimum value, maximum value, sort-
ing, etc.) on a dictionary of data.

1.8. Calculating with Dictionaries | 13

Solution

Consider a dictionary that maps stock names to prices:

prices = {
'ACME': 45.23,
'AAPL': 612.78,
'IBM': 205.55,
'HPQ': 37.20,
'FB': 10.75

}

In order to perform useful calculations on the dictionary contents, it is often useful to
invert the keys and values of the dictionary using zip(). For example, here is how to
find the minimum and maximum price and stock name:

min_price = min(zip(prices.values(), prices.keys()))
min_price is (10.75, 'FB')

max_price = max(zip(prices.values(), prices.keys()))
max_price is (612.78, 'AAPL')

Similarly, to rank the data, use zip() with sorted(), as in the following:

prices_sorted = sorted(zip(prices.values(), prices.keys()))
prices_sorted is [(10.75, 'FB'), (37.2, 'HPQ'),

(45.23, 'ACME'), (205.55, 'IBM'),

(612.78, 'AAPL')]

When doing these calculations, be aware that zip() creates an iterator that can only be
consumed once. For example, the following code is an error:
prices_and_names = zip(prices.values(), prices.keys())

print(min(prices_and_names)) # OK
print(max(prices_and_names)) # ValueError: max() arg is an empty sequence

Discussion

If you try to perform common data reductions on a dictionary, you’'ll find that they only
process the keys, not the values. For example:

min(prices) # Returns 'AAPL'

max(prices) # Returns 'IBM'
This is probably not what you want because you're actually trying to perform a calcu-
lation involving the dictionary values. You might try to fix this using the values()
method of a dictionary:

min(prices.values()) # Returns 10.75
max(prices.values()) # Returns 612.78

14 | Chapter 1: Data Structures and Algorithms

Unfortunately, this is often not exactly what you want either. For example, you may want
to know information about the corresponding keys (e.g., which stock has the lowest
price?).

You can get the key corresponding to the min or max value if you supply a key function
tomin() and max(). For example:

min(prices, key=lambda k: prices[k]) # Returns 'FB'

max(prices, key=lambda k: prices[k]) # Returns 'AAPL'
However, to get the minimum value, you'll need to perform an extra lookup step. For
example:

min_value = prices[min(prices, key=lambda k: prices[k])]

The solution involving zip() solves the problem by “inverting” the dictionary into a
sequence of (value, key) pairs. When performing comparisons on such tuples, the
value element is compared first, followed by the key. This gives you exactly the behavior
that you want and allows reductions and sorting to be easily performed on the dictionary
contents using a single statement.

It should be noted that in calculations involving (value, key) pairs, the key will be
used to determine the result in instances where multiple entries happen to have the same
value. For instance, in calculations such as min() and max(), the entry with the smallest
or largest key will be returned if there happen to be duplicate values. For example:

>>> prices = { 'AMA' : 45.23, '77Z': 45.23 }
>>> min(zip(prices.values(), prices.keys()))
(45.23, 'AAA")
>>> max(zip(prices.values(), prices.keys()))
(45.23, '777')

>>>

1.9. Finding Commonalities in Two Dictionaries

Problem

You have two dictionaries and want to find out what they might have in common (same
keys, same values, etc.).

Solution
Consider two dictionaries:
a={
'x' 1,
|yl 2’
'z" ¢ 3

1.9. Finding Commonalities in Two Dictionaries | 15

To find out what the two dictionaries have in common, simply perform common set
operations using the keys() or items() methods. For example:

Find keys in common
a.keys() & b.keys() #{ 'x', 'yv' }

Find keys in a that are not in b
a.keys() - b.keys() #{ 'z' }

Find (key,value) pairs in common

a.items() & b.items() # { ('y', 2) }
These kinds of operations can also be used to alter or filter dictionary contents. For
example, suppose you want to make a new dictionary with selected keys removed. Here
is some sample code using a dictionary comprehension:

Make a new dictionary with certain keys removed
c = {key:a[key] for key in a.keys() - {'z', 'w'}}
#cis {'x': 1, 'y': 2}

Discussion

A dictionary is a mapping between a set of keys and values. The keys() method of a
dictionary returns a keys-view object that exposes the keys. A little-known feature of
keys views is that they also support common set operations such as unions, intersections,
and differences. Thus, if you need to perform common set operations with dictionary
keys, you can often just use the keys-view objects directly without first converting them
into a set.

The items() method of a dictionary returns an items-view object consisting of (key,
value) pairs. This object supports similar set operations and can be used to perform
operations such as finding out which key-value pairs two dictionaries have in common.

Although similar, the values() method of a dictionary does not support the set oper-
ations described in this recipe. In part, this is due to the fact that unlike keys, the items
contained in a values view aren’t guaranteed to be unique. This alone makes certain set
operations of questionable utility. However, if you must perform such calculations, they
can be accomplished by simply converting the values to a set first.

16 | Chapter 1: Data Structures and Algorithms

1.10. Removing Duplicates from a Sequence while
Maintaining Order

Problem

You want to eliminate the duplicate values in a sequence, but preserve the order of the
remaining items.

Solution

If the values in the sequence are hashable, the problem can be easily solved using a set
and a generator. For example:

def dedupe(items):
seen = set()
for item in items:
if item not in seen:
yield item
seen.add(item)

Here is an example of how to use your function:

>>>a =[1,5,2,1,9,1,5, 10]
>>> list(dedupe(a))
[1, 5, 2, 9, 16]

>>>

This only works if the items in the sequence are hashable. If you are trying to eliminate
duplicates in a sequence of unhashable types (such as dicts), you can make a slight
change to this recipe, as follows:

def dedupe(items, key=None):
seen = set()
for item in items:
val = item if key is None else key(item)
if val not in seen:
yield item
seen.add(val)

Here, the purpose of the key argument is to specify a function that converts sequence
items into a hashable type for the purposes of duplicate detection. Here’s how it works:

>>> a = [{'x":1, "'y':2}, {'x":1, 'y':3}, {'x":1, 'y':2}, {'x':2, 'y':4}]

>>> list(dedupe(a, key=lambda d: (d['x'],d['y'])))

({'x'= 1, 'y'e 2}, {"x's 1, 'y's 3}, {'x': 2, 'y': 4}]

>>> list(dedupe(a, key=lambda d: d['x']))

[{'x": 1, 'y'+ 2}, {'x": 2, 'y': 4}]

>>>
This latter solution also works nicely if you want to eliminate duplicates based on the
value of a single field or attribute or a larger data structure.

1.10. Removing Duplicates from a Sequence while Maintaining Order | 17

Discussion

If all you want to do is eliminate duplicates, it is often easy enough to make a set. For
example:

>>> a3

[1, 5,2, 1,9, 1,5, 10]

>>> set(a)

{1, 2, 10, 5, 9}

>>>
However, this approach doesn’t preserve any kind of ordering. So, the resulting data will
be scrambled afterward. The solution shown avoids this.

The use of a generator function in this recipe reflects the fact that you might want the
function to be extremely general purpose—not necessarily tied directly to list process-
ing. For example, if you want to read a file, eliminating duplicate lines, you could simply
do this:

with open(somefile,'r') as f:

for line in dedupe(f):

The specification of a key function mimics similar functionality in built-in functions
such as sorted(), min(), and max(). For instance, see Recipes 1.8 and 1.13.

1.11. Naming a Slice

Problem

Your program has become an unreadable mess of hardcoded slice indices and you want
to clean it up.

Solution

Suppose you have some code that is pulling specific data fields out of a record string
with fixed fields (e.g., from a flat file or similar format):

HHHHHH 0123456789012345678901234567890123456789012345678901234567890 '
record = 'L, 00 0 L. 513.25 ...l '
cost = int(record[20:32]) * float(record[40:48])

Instead of doing that, why not name the slices like this?

SHARES = slice(20,32)
PRICE = slice(40,48)

cost = int(record[SHARES]) * float(record[PRICE])

18 | Chapter 1: Data Structures and Algorithms

In the latter version, you avoid having a lot of mysterious hardcoded indices, and what
you're doing becomes much clearer.

Discussion

Asageneral rule, writing code with alot of hardcoded index values leads to a readability
and maintenance mess. For example, if you come back to the code a year later, you'll
look at it and wonder what you were thinking when you wrote it. The solution shown
is simply a way of more clearly stating what your code is actually doing.

In general, the built-in slice() creates a slice object that can be used anywhere a slice
is allowed. For example:

>>> items = [0, 1, 2, 3, 4, 5, 6]
>>> a = slice(2, 4)
>>> items[2:4]

[2, 3]

>>> items[a]

[2, 3]

>>> items[a] = [10,11]
>>> items

[0, 1, 10, 11, 4, 5, 6]
>>> del items[a]

>>> items

[o, 1, 4, 5, 6]

If you have a slice instance s, you can get more information about it by looking at its
s.start, s.stop, and s.step attributes, respectively. For example:

>>> a = slice(10, 50, 2)
>>> a.start

10

>>> a.stop

50

>>> a.step

2

>>>

In addition, you can map a slice onto a sequence of a specific size by using its indi
ces(size) method. This returns a tuple (start, stop, step) where all values have
been suitably limited to fit within bounds (as to avoid IndexError exceptions when
indexing). For example:

>>> s = 'HelloWorld'

>>> a.indices(len(s))

(5, 10, 2)

>>> for 1 in range(*a.indices(len(s))):
print(s[i])

1.11.NamingaSlice | 19

>>>

1.12. Determining the Most Frequently Occurring Items in
a Sequence

Problem

You have a sequence of items, and you’d like to determine the most frequently occurring
items in the sequence.

Solution

The collections.Counter class is designed for just such a problem. It even comes with
a handy most_common() method that will give you the answer.

To illustrate, let’s say you have a list of words and you want to find out which words
occur most often. Here’s how you would do it:

words = [
'look', 'into', 'my', 'eyes', 'look', 'into', 'my', 'eyes',
'the', 'eyes', 'the', 'eyes', 'the', 'eyes', 'not', 'around', 'the',
'eyes', "don't", 'look', 'around', 'the', 'eyes', 'look', 'into',

my', 'eyes', "you're", 'under'

]

from collections import Counter

word_counts = Counter(words)

top_three = word_counts.most_common(3)
print(top_three)

Outputs [('eyes', 8), ('the', 5), ('look', 4)]

Discussion

As input, Counter objects can be fed any sequence of hashable input items. Under the
covers, a Counter is a dictionary that maps the items to the number of occurrences. For
example:

>>> word_counts['not']
1
>>> word_counts['eyes']
8

>>>
If you want to increment the count manually, simply use addition:
>>> morewords = ['why','are','you','not','looking',"'in','my', 'eyes']

>>> for word in morewords:
word_counts[word] += 1

20 | Chapter 1: Data Structures and Algorithms

>>> word_counts['eyes']
9

Or, alternatively, you could use the update() method:

>>> word_counts.update(morewords)
>>>

A little-known feature of Counter instances is that they can be easily combined using
various mathematical operations. For example:

>>> a = Counter(words)

>>> b = Counter(morewords)

>>> a

Counter({'eyes': 8, 'the': 5, 'look': 4, 'into': 3, 'my': 3, 'around': 2,
"you're": 1, "don't": 1, 'under': 1, 'not': 1})

>>> b

Counter({'eyes': 1, 'looking': 1, 'are': 1, 'in': 1, 'not': 1, 'you': 1,
'my': 1, 'why': 1})

>>> # Combine counts

>>> c=a+b

>>> C

Counter({'eyes': 9, 'the': 5, 'look': 4, 'my': 4, 'into': 3, 'not': 2,
'around': 2, "you're": 1, "don't": 1, 'in': 1, 'why': 1,
'looking': 1, ' 1, 'under': 1, 'you': 1})

are :

>>> # Subtract counts

>>>d=a-b

>>> d

Counter({'eyes': 7, 'the': 5, 'look': 4, 'into': 3, 'my':
"you're": 1, "don't": 1, 'under': 1})

2, 'around': 2,
>>>

Needless to say, Counter objects are a tremendously useful tool for almost any kind of
problem where you need to tabulate and count data. You should prefer this over man-
ually written solutions involving dictionaries.

1.13. Sorting a List of Dictionaries by a Common Key

Problem

You have a list of dictionaries and you would like to sort the entries according to one
or more of the dictionary values.

1.13. Sorting a List of Dictionaries bya Common Key | 21

Solution

Sorting this type of structure is easy using the operator module’s itemgetter function.
Let’s say you've queried a database table to get a listing of the members on your website,
and you receive the following data structure in return:

rows = [
{'fname': 'Brian', 'lname': 'Jones', 'uid': 1003},
{'fname': 'David', 'lname': 'Beazley', 'uid': 1002},
{'fname': 'John', 'lname': 'Cleese', 'uid': 1001},
{'fname': 'Big', 'lname': 'Jones', 'uid': 1004}

1

It’s fairly easy to output these rows ordered by any of the fields common to all of the
dictionaries. For example:

from operator import itemgetter

rows_by_fname = sorted(rows, key=itemgetter('fname'))
rows_by uid = sorted(rows, key=itemgetter('uid'))

print(rows_by_fname)
print(rows_by_uid)

The preceding code would output the following:

[{'frname': 'Big', 'uid': 1004, 'lname': 'Jones'},

{'fname': 'Brian', 'uid': 1003, 'lname': 'Jones'},
{'fname': 'David', 'uid': 1002, 'lname': 'Beazley'},
{'fname': 'John', 'uid': 1001, 'lname': 'Cleese'}]
[{'frname': 'John', 'uid': 1001, 'lname': 'Cleese'},
{'fname': 'David', 'uid': 1002, 'lname': 'Beazley'},
{'fname': 'Brian', 'uid': 1003, 'lname': 'Jones'},
{'fname': 'Big', 'uild': 1004, 'lname': 'Jones'}]

The itemgetter() function can also accept multiple keys. For example, this code

rows_by_1lfname = sorted(rows, key=itemgetter('lname','fname'))
print(rows_by_lfname)

Produces output like this:

[{'fname': 'David', 'uid': 1002, 'lname': 'Beazley'},

{'fname': 'John', 'uid': 1001, 'lname': 'Cleese'},

{'fname': 'Big', 'uid': 1004, 'lname': 'Jones'},

{'fname': 'Brian', 'uid': 1003, 'lname': 'Jones'}]
Discussion

In this example, rows is passed to the built-in sorted() function, which accepts a key-
word argument key. This argument is expected to be a callable that accepts a single item

2 |

Chapter 1: Data Structures and Algorithms

from rows as input and returns a value that will be used as the basis for sorting. The
itemgetter() function creates just such a callable.

The operator.itemgetter() function takes as arguments the lookup indices used to
extract the desired values from the records in rows. It can be a dictionary key name, a
numeric list element, or any value that can be fed to an object’s __getitem__() method.
If you give multiple indices to itemgetter (), the callable it produces will return a tuple
with all of the elements in it, and sorted() will order the output according to the sorted
order of the tuples. This can be useful if you want to simultaneously sort on multiple
fields (such as last and first name, as shown in the example).

The functionality of 1temgetter() is sometimes replaced by lambda expressions. For
example:

rows_by_fname = sorted(rows, key=lambda r: r['fname'])

rows_by_1fname = sorted(rows, key=lambda r: (r['lname'],r['fname']))

This solution often works just fine. However, the solution involving itemgetter()
typically runs a bit faster. Thus, you might prefer it if performance is a concern.

Last, but not least, don’t forget that the technique shown in this recipe can be applied
to functions such as min() and max(). For example:

>>> min(rows, key=itemgetter('uid'))

{'fname': 'John', 'lname': 'Cleese', 'uid': 1001}

>>> max(rows, key=itemgetter('uid'))

{'fname': 'Big', 'lname': 'Jones', 'uid': 1004}

>>>

1.14. Sorting Objects Without Native Comparison Support

Problem

You want to sort objects of the same class, but they don't natively support comparison
operations.

Solution

The built-in sorted() function takes a key argument that can be passed a callable that
will return some value in the object that sorted will use to compare the objects. For
example, if you have a sequence of User instances in your application, and you want to
sort them by their user_1id attribute, you would supply a callable that takes a User
instance as input and returns the user_1id. For example:

>>> class User:

def __init_ (self, user_id):
self.user_id = user_1id

1.14. Sorting Objects Without Native Comparison Support | 23

def _ repr__(self):
return 'User({})'.format(self.user_id)

>>> users = [User(23), User(3), User(99)]
>>> users

[User(23), User(3), User(99)]

>>> sorted(users, key=lambda u: u.user_id)
[User(3), User(23), User(99)]

>>>

Instead of using lambda, an alternative approach is to use operator.attrgetter():

>>> from operator import attrgetter
>>> sorted(users, key=attrgetter('user_1id'))
[User(3), User(23), User(99)]

>>>

Discussion

The choice of whether or not to use lambda or attrgetter() may be one of personal
preference. However, attrgetter() is often a tad bit faster and also has the added
feature of allowing multiple fields to be extracted simultaneously. This is analogous to
the use of operator.itemgetter() for dictionaries (see Recipe 1.13). For example, if
User instances also had a first_name and last_name attribute, you could perform a
sort like this:

by_name = sorted(users, key=attrgetter('last_name', 'first_name'))

It is also worth noting that the technique used in this recipe can be applied to functions
such as min() and max(). For example:

>>> min(users, key=attrgetter('user_id'")
User(3)
>>> max(users, key=attrgetter('user_id")
User(99)

>>>

1.15. Grouping Records Together Based on a Field

Problem

You have a sequence of dictionaries or instances and you want to iterate over the data
in groups based on the value of a particular field, such as date.

Solution

The itertools.groupby() function is particularly useful for grouping data together
like this. To illustrate, suppose you have the following list of dictionaries:

24 | Chapter 1: Data Structures and Algorithms

rows = [
{'address': '5412
{'address': '5148
{'address': '5800
{'address': '2122
{'address': '5645
{'address': '1060
{'address': '4801
{'address': '1039

CLARK', 'date': '07/01/2012'},
CLARK', 'date': '07/04/2012'},
58TH', 'date': '07/02/2012'},
CLARK', 'date': '07/03/2012'},
RAVENSWOOD', 'date': '07/02/2012'},
ADDISON', 'date': '07/02/2012'},
BROADWAY', 'date': '07/01/2012'},
GRANVILLE', 'date': '07/04/2012'},

T Z==z=zm=Z=2

]

Now suppose you want to iterate over the data in chunks grouped by date. To do it, first
sort by the desired field (in this case, date) and then use itertools.groupby():

from operator import itemgetter
from itertools import groupby

Sort by the desired field first
rows.sort(key=itemgetter('date'))

Iterate in groups
for date, items in groupby(rows, key=itemgetter('date')):
print(date)
for 1 in items:
print(’

E :L)
This produces the following output:

07/01/2012
{'date': '07/01/2012', 'address': '5412 N CLARK'}
{'date': '07/01/2012', 'address': '4801 N BROADWAY'}
07/02/2012
{'date': '07/02/2012', 'address': '5800 E 58TH'}
{'date': '07/02/2012', 'address': '5645 N RAVENSWOOD'}
{'date': '07/02/2012', 'address': '1060 W ADDISON'}
07/03/2012
{'date': '07/03/2012', 'address': '2122 N CLARK'}
07/04/2012
{'date': '07/04/2012', 'address': '5148 N CLARK'}
{'date': '07/04/2012', 'address': '1039 W GRANVILLE'}

Discussion

The groupby() function works by scanning a sequence and finding sequential “runs”
of identical values (or values returned by the given key function). On each iteration, it
returns the value along with an iterator that produces all of the items in a group with
the same value.

Animportant preliminary step is sorting the data according to the field of interest. Since
groupby() only examines consecutive items, failing to sort first won’t group the records
as you want.

1.15. Grouping Records Together Based ona Field | 25

If your goal is to simply group the data together by dates into a large data structure that
allows random access, you may have better luck using defaultdict() to build a
multidict, as described in Recipe 1.6. For example:

from collections import defaultdict
rows_by_date = defaultdict(list)
for row in rows:

rows_by_date[row['date']].append(row)

This allows the records for each date to be accessed easily like this:

>>> for r in rows_by_date['07/01/2012']:
print(r)

{'date': '07/01/2012', 'address': '5412 N CLARK'}
{'date': '07/01/2012', 'address': '4801 N BROADWAY'}

>>>

For this latter example, it's not necessary to sort the records first. Thus, if memory is no
concern, it may be faster to do this than to first sort the records and iterate using

groupby().
1.16. Filtering Sequence Elements

Problem

You have data inside of a sequence, and need to extract values or reduce the sequence
using some criteria.

Solution

The easiest way to filter sequence data is often to use a list comprehension. For example:

>>> mylist = [1, 4, -5, 10, -7, 2, 3, -1]
>>> [n for n in mylist if n > 0]

[1, 4, 10, 2, 3]

>>> [n for n in mylist if n < 0]

[-5, -7, -1]

>>>
One potential downside of using a list comprehension is that it might produce a large

result if the original input is large. If this is a concern, you can use generator expressions
to produce the filtered values iteratively. For example:

>>> pos = (n for n in mylist if n > 0)
>>> pos
<generator object <genexpr> at 0x1006a0eb0>
>>> for x in pos:
print(x)

26 | Chapter 1: Data Structures and Algorithms

10
2
3

>>>

Sometimes, the filtering criteria cannot be easily expressed in a list comprehension or
generator expression. For example, suppose that the filtering process involves exception
handling or some other complicated detail. For this, put the filtering code into its own
function and use the built-in filter() function. For example:

values = [|1|’ |2|, |_3|’ |_|’ |4|’ IN/AI’ '5‘]

def is_int(val):
try:
x = int(val)
return True
except ValueError:
return False

ivals = list(filter(is_1int, values))

print(ivals)

Outputs ['1', '2', '-3', '4', '5']
filter() creates an iterator, so if you want to create a list of results, make sure you also
use list() as shown.

Discussion

List comprehensions and generator expressions are often the easiest and most straight-
forward ways to filter simple data. They also have the added power to transform the
data at the same time. For example:

s>>> mylist = [1, 4, -5, 10, -7, 2, 3, -1]

>>> import math

>>> [math.sqrt(n) for n in mylist if n > 0]

[1.0, 2.0, 3.1622776601683795, 1.4142135623730951, 1.7320508075688772]

>>>

One variation on filtering involves replacing the values that don’t meet the criteria with
a new value instead of discarding them. For example, perhaps instead of just finding
positive values, you want to also clip bad values to fit within a specified range. This is
often easily accomplished by moving the filter criterion into a conditional expression
like this:

>>> clip_neg = [n if n > 0 else 0 for n in mylist]
>>> clip_neg

[1, 4, 0, 10, 0, 2, 3, 0]

>>> clip_pos = [n if n < 0 else 0 for n in mylist]
>>> clip_pos

1.16. Filtering Sequence Elements | 27

[e, 0, -5, 0, -7, 0, 0, -1]

>>>
Another notable filtering tool is 1tertools.compress(), which takes an iterable and
an accompanying Boolean selector sequence as input. As output, it gives you all of the
items in the iterable where the corresponding element in the selector is True. This can
be useful if you're trying to apply the results of filtering one sequence to another related
sequence. For example, suppose you have the following two columns of data:

'4801
'1039

BROADWAY' ,
GRANVILLE',

addresses = [

'5412 N CLARK',
'5148 N CLARK',
'5800 E 58TH',
'2122 N CLARK'
'5645 N RAVENSWOOD',
'1060 W ADDISON',

N

W

1
counts = [0, 3, 10, 4, 1, 7, 6, 1]

Now suppose you want to make a list of all addresses where the corresponding count
value was greater than 5. Here’s how you could do it:

>>> from itertools import compress

>>> more5 = [n > 5 for n in counts]

>>> more5s

[False, False, True, False, False, True, True, False]

>>> list(compress(addresses, more5))

['5800 E 58TH', '4801 N BROADWAY', '1039 W GRANVILLE']

>>>
The key here is to first create a sequence of Booleans that indicates which elements
satisfy the desired condition. The compress() function then picks out the items corre-

sponding to True values.

Like filter(), compress() normally returns an iterator. Thus, you need to use list()
to turn the results into a list if desired.

1.17. Extracting a Subset of a Dictionary

Problem

You want to make a dictionary that is a subset of another dictionary.

28 | Chapter 1: Data Structures and Algorithms

Solution
This is easily accomplished using a dictionary comprehension. For example:

prices = {
'ACME': 45.23,
'AAPL': 612.78,
"IBM': 205.55,
'HPQ': 37.20,
'FB': 10.75

}

Make a dictionary of all prices over 200
pl = { key:value for key, value in prices.items() if value > 200 }

Make a dictionary of tech stocks
tech_names = { 'AAPL', 'IBM', 'HPQ', 'MSFT' }
p2 = { key:value for key,value in prices.items() if key in tech_names }

Discussion

Much of what can be accomplished with a dictionary comprehension might also be done
by creating a sequence of tuples and passing them to the dict() function. For example:

pl = dict((key, value) for key, value in prices.items() if value > 200)
However, the dictionary comprehension solution is a bit clearer and actually runs quite

a bit faster (over twice as fast when tested on the prices dictionary used in the example).

Sometimes there are multiple ways of accomplishing the same thing. For instance, the
second example could be rewritten as:

Make a dictionary of tech stocks

tech_names = { 'AAPL', 'IBM', 'HPQ', 'MSFT' }

p2 = { key:prices[key] for key in prices.keys() & tech_names }
However, a timing study reveals that this solution is almost 1.6 times slower than the
first solution. If performance matters, it usually pays to spend a bit of time studying it.
See Recipe 14.13 for specific information about timing and profiling.

1.18. Mapping Names to Sequence Elements

Problem

You have code that accesses list or tuple elements by position, but this makes the code
somewhat difficult to read at times. You'd also like to be less dependent on position in
the structure, by accessing the elements by name.

1.18. Mapping Names to Sequence Elements | 29

Solution

collections.namedtuple() provides these benefits, while adding minimal overhead
over using a normal tuple object. collections.namedtuple() is actually a factory
method that returns a subclass of the standard Python tuple type. You feed it a type
name, and the fields it should have, and it returns a class that you can instantiate, passing
in values for the fields you've defined, and so on. For example:

>>> from collections import namedtuple

>>> Subscriber = namedtuple('Subscriber', ['addr', 'joined'])
>>> sub = Subscriber('jonesy@example.com', '2012-10-19")

>>> sub

Subscriber(addr="'jonesy@example.com', joined='2012-10-19")
>>> sub.addr

' jonesy@example.com'

>>> sub. joined

'2012-10-19'

>>>

Although an instance of a namedtuple looks like a normal class instance, it is inter-

changeable with a tuple and supports all of the usual tuple operations such as indexing
and unpacking. For example:

>>> len(sub)

2

>>> addr, joined = sub

>>> addr

'jonesy@example.com'

>>> joined

'2012-10-19'

>>>
A major use case for named tuples is decoupling your code from the position of the
elements it manipulates. So, if you get back a large list of tuples from a database call,
then manipulate them by accessing the positional elements, your code could break if,
say, you added a new column to your table. Not so if you first cast the returned tuples
to namedtuples.

To illustrate, here is some code using ordinary tuples:

def compute_cost(records):
total = 0.0
for rec in records:
total += rec[1] * rec[2]
return total
References to positional elements often make the code a bit less expressive and more

dependent on the structure of the records. Here is a version that uses a namedtuple:

from collections import namedtuple

Stock = namedtuple('Stock', ['name', 'shares', 'price'l])

30 | Chapter1: Data Structures and Algorithms

def compute_cost(records):
total = 0.0
for rec in records:
s = Stock(*rec)
total += s.shares * s.price
return total

Naturally, you can avoid the explicit conversion to the Stock namedtuple if the records
sequence in the example already contained such instances.

Discussion

One possible use of a namedtuple is as a replacement for a dictionary, which requires
more space to store. Thus, if youare building large data structures involving dictionaries,
use of a namedtuple will be more efficient. However, be aware that unlike a dictionary,
a namedtuple is immutable. For example:

>>> s = Stock('ACME', 100, 123.45)
>>> S
Stock(name="'ACME', shares=100, price=123.45)
>>> s.shares = 75
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: can't set attribute
>>>

If you need to change any of the attributes, it can be done using the _replace() method
of a namedtuple instance, which makes an entirely new namedtuple with specified val-
ues replaced. For example:

>>> s = s._replace(shares=75)

>>> S

Stock(name="'ACME', shares=75, price=123.45)

>>>
A subtle use of the _replace() method is that it can be a convenient way to populate
named tuples that have optional or missing fields. To do this, you make a prototype
tuple containing the default values and then use _replace() to create new instances
with values replaced. For example:

from collections import namedtuple
Stock = namedtuple('Stock', ['name', 'shares', 'price', 'date', 'time'])

Create a prototype instance
stock_prototype = Stock('', 0, 0.0, None, None)

Function to convert a dictionary to a Stock
def dict_to_stock(s):
return stock_prototype._replace(**s)

1.18. Mapping Names to Sequence Elements | 31

Here is an example of how this code would work:

>>> a = {'name': 'ACME', 'shares': 100, 'price': 123.45}

>>> dict_to_stock(a)

Stock(name="'ACME', shares=100, price=123.45, date=None, time=None)

>>> b = {'name': 'ACME', 'shares': 100, 'price': 123.45, 'date': '12/17/2012'}
>>> dict_to_stock(b)

Stock(name='ACME', shares=100, price=123.45, date='12/17/2012', time=None)

>>>
Last, but not least, it should be noted that if your goal is to define an efficient data
structure where you will be changing various instance attributes, using namedtuple is

not your best choice. Instead, consider defining a class using __slots__ instead (see
Recipe 8.4).

1.19. Transforming and Reducing Data at the Same Time

Problem

You need to execute a reduction function (e.g., sum(), min(), max()), but first need to
transform or filter the data.

Solution

A very elegant way to combine a data reduction and a transformation is to use a
generator-expression argument. For example, if you want to calculate the sum of
squares, do the following:

nums = [1, 2, 3, 4, 5]
s = sum(x * x for x in nums)

Here are a few other examples:

Determine if any .py files exist in a directory
import os
files = os.listdir('dirname')
if any(name.endswith('.py') for name in files):
print('There be python!')
else:
print('Sorry, no python.')

Output a tuple as CSV
s = ('"ACME', 50, 123.45)
print(','.join(str(x) for x in s))

Data reduction across fields of a data structure
portfolio = [

{'name':'GO0G', 'shares': 50},

{'name':'YHOO', 'shares': 75},

{'name':'AOL', 'shares': 20},

32 | Chapter 1: Data Structures and Algorithms

{'name':'SCOX', 'shares': 65}
1

min_shares = min(s['shares'] for s in portfolio)

Discussion

The solution shows a subtle syntactic aspect of generator expressions when supplied as
the single argument to a function (i.e., you don’t need repeated parentheses). For ex-
ample, these statements are the same:

s = sum((x * x for x in nums)) # Pass generator-expr as argument
s = sum(x * x for x in nums) # More elegant syntax

Using a generator argument is often a more efficient and elegant approach than first
creating a temporary list. For example, if you didn’t use a generator expression, you
might consider this alternative implementation:

nums = [1, 2, 3, 4, 5]
s = sum([x * x for x in nums])

This works, but it introduces an extra step and creates an extra list. For such a small list,
it might not matter, but if nums was huge, you would end up creating a large temporary
data structure to only be used once and discarded. The generator solution transforms
the data iteratively and is therefore much more memory-efficient.

Certain reduction functions such as min() and max() accept a key argument that might
be useful in situations where you might be inclined to use a generator. For example, in
the portfolio example, you might consider this alternative:

Original: Returns 20
min_shares = min(s['shares'] for s in portfolio)

Alternative: Returns {'name': 'AOL', 'shares': 20}
min_shares = min(portfolio, key=lambda s: s['shares'])

1.20. Combining Multiple Mappings into a Single
Mapping

Problem

You have multiple dictionaries or mappings that you want to logically combine into a
single mapping to perform certain operations, such as looking up values or checking
for the existence of keys.

Solution

Suppose you have two dictionaries:

1.20. Combining Multiple Mappings into a Single Mapping | 33

a={'x"+1, 'z': 3}

b={"y': 2, 'z': 4}
Now suppose you want to perform lookups where you have to check both dictionaries
(e.g., first checking in a and then in b if not found). An easy way to do this is to use the
ChainMap class from the collections module. For example:

from collections import ChainMap
c = ChainMap(a,b)

print(c['x"']) # Outputs 1 (from a)

print(c['y']) # Outputs 2 (from b)

print(c['z']) # Outputs 3 (from a)
Discussion

A ChainMap takes multiple mappings and makes them logically appear as one. However,
the mappings are not literally merged together. Instead, a ChainMap simply keeps a list
of the underlying mappings and redefines common dictionary operations to scan the
list. Most operations will work. For example:

>>> len(c)

3

>>> list(c.keys())
['x", 'y', 'z']

>>> list(c.values())
[1, 2, 3]

>>>

If there are duplicate keys, the values from the first mapping get used. Thus, the entry
c['z'] in the example would always refer to the value in dictionary a, not the value in
dictionary b.

Operations that mutate the mapping always affect the first mapping listed. For example:

>>> c['z'] = 10
>>> c['w'] = 40
>>> del c['x']

>>> a
{'w': 40, 'z': 10}
>>> del c['y']

KeyError: "Key not found in the first mapping: 'y
>>>

A ChainMap is particularly useful when working with scoped values such as variables in
a programming language (i.e., globals, locals, etc.). In fact, there are methods that make
this easy:

34 | Chapter 1: Data Structures and Algorithms

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

>>>

values = ChainMap()
values['x'] = 1

Add a new mapping

values = values.new_child()
values['x'] = 2

Add a new mapping

values = values.new_child()
values['x'] = 3

values

ChainMap({'x"': 3}, {'x": 23}, {'x': 1})

>>>

>>>

values['x"']

Discard last mapping
values = values.parents
values['x"']

Discard last mapping
values = values.parents

values['x"']

values

ChainMap({'x"': 1})

>>>

As an alternative to ChainMap, you might consider merging dictionaries together using
the update() method. For example:

>>>
>>>
>>>
>>>
>>>
1

>>>
2

>>>
3

>>>

a={'x"+1, 'z': 3%
b={"'y': 2, 'z': 4}
merged = dict(b)
merged.update(a)
merged['x"']

merged['y']

merged['z']

This works, but it requires you to make a completely separate dictionary object (or
destructively alter one of the existing dictionaries). Also, if any of the original diction-
aries mutate, the changes don’t get reflected in the merged dictionary. For example:

>>>
>>>
1

a['x'] = 13
merged['x"']

A ChainMap uses the original dictionaries, so it doesn’t have this behavior. For example:

1.20. Combining Multiple Mappings into a Single Mapping | 35

>>>a = {'x': 1, 'z': 3}
>>> b ={'y': 2, 'z': 4}
>>> merged = ChainMap(a, b)
>>> merged['x']

>>> a['x'] = 42
>>> merged['x'] # Notice change to merged dicts
42

>>>

36 | Chapter 1: Data Structures and Algorithms

CHAPTER 2
Strings and Text

Almost every useful program involves some kind of text processing, whether it is parsing
data or generating output. This chapter focuses on common problems involving text
manipulation, such as pulling apart strings, searching, substitution, lexing, and parsing.
Many of these tasks can be easily solved using built-in methods of strings. However,
more complicated operations might require the use of regular expressions or the cre-
ation of a full-fledged parser. All of these topics are covered. In addition, a few tricky
aspects of working with Unicode are addressed.

2.1. Splitting Strings on Any of Multiple Delimiters

Problem

You need to split a string into fields, but the delimiters (and spacing around them) aren't
consistent throughout the string.

Solution

The split() method of string objects is really meant for very simple cases, and does
not allow for multiple delimiters or account for possible whitespace around the delim-
iters. In cases when you need a bit more flexibility, use the re.split() method:

>>> line = 'asdf fjdk; afed, fjek,asdf, foo'

>>> import re

>>> re.split(r'[;,\s]\s*', line)
['asdf', 'fjdk', 'afed', 'fjek', 'asdf', 'foo']

Discussion

The re.split() function is useful because you can specify multiple patterns for the
separator. For example, as shown in the solution, the separator is either a comma (,),

37

semicolon (;), or whitespace followed by any amount of extra whitespace. Whenever
that pattern is found, the entire match becomes the delimiter between whatever fields
lie on either side of the match. The result is a list of fields, just as with str.split().

When using re.split(), you need to be a bit careful should the regular expression
pattern involve a capture group enclosed in parentheses. If capture groups are used,
then the matched text is also included in the result. For example, watch what happens
here:

>>> flelds = re.split(r'(;|,[\s)\s*', line)

>>> fields

[lasdfl’ Al |’ |fjdk|’ l;l, |afedl’ |’|’ lfjekl’ |,|, lasdf|, l’l’ |foo|]

>>>
Getting the split characters might be useful in certain contexts. For example, maybe you
need the split characters later on to reform an output string:

>>> values = filelds[::2]

>>> delimiters = filelds[1::2] + ['']

>>> values

['asdf', 'fjdk', 'afed', 'fjek', 'asdf', 'foo']

>>> delimiters

[|||,||-||||||]
E R I I]

>>> # Reform the line using the same delimiters

>>> ' join(v+d for v,d in zip(values, delimiters))

'asdf fjdk;afed,fjek,asdf,foo’

>>>
If you don’t want the separator characters in the result, but still need to use parentheses
to group parts of the regular expression pattern, make sure you use a noncapture group,
specified as (?:...). For example:

>>> re.split(r'(?:,[;|\s)\s*', line)

['asdf', 'fidk', 'afed’, 'fjek', 'asdf', 'foo']

>>>

2.2. Matching Text at the Start or End of a String

Problem

You need to check the start or end of a string for specific text patterns, such as filename
extensions, URL schemes, and so on.

Solution

A simple way to check the beginning or end of a string is to use the str.starts
with() or str.endswith() methods. For example:

38 | Chapter2:Strings and Text

>>> filename = 'spam.txt'

>>> filename.endswith('.txt')
True

>>> filename.startswith('file:")
False

>>> url = 'http://www.python.org'
>>> url.startswith('http:")

True

>>>

If you need to check against multiple choices, simply provide a tuple of possibilities to
startswith() or endswith():

>>> import os

>>> filenames = os.listdir('."')

>>> filenames

['"Makefile', 'foo.c', 'bar.py', 'spam.c', 'spam.h']

>>> [name for name in filenames if name.endswith(('.c', '.h"))]
['foo.c', 'spam.c', 'spam.h'

>>> any(name.endswith('.py') for name in filenames)

True

>>>

Here is another example:

from urllib.request import urlopen

def read_data(name):
if name.startswith(('http:', 'https:', 'ftp:')):
return urlopen(name).read()
else:
with open(name) as f:
return f.read()

Oddly, thisis one part of Python where a tuple is actually required as input. If you happen
to have the choices specified in a list or set, just make sure you convert them using
tuple() first. For example:

>>> choilces = ['http:', 'ftp:']
>>> url = 'http://www.python.org'
>>> url.startswith(choices)

File "<stdin>", line 1, in <module>
TypeError: startswith first arg must be str or a tuple of str, not list
>>> url.startswith(tuple(choices))
True
>>>

2.2. Matching Text at the Start or End of a String | 39

Discussion

The startswith() and endswith() methods provide a very convenient way to perform
basic prefix and suffix checking. Similar operations can be performed with slices, but
are far less elegant. For example:

>>> filename = 'spam.txt'

>>> filename[-4:] == '.txt'

True

>>> url = 'http://www.python.org'

>>> url[:5] == 'http:' or url[:6] == 'https:' or url[:4] == 'ftp:'
True

>>>
You might also be inclined to use regular expressions as an alternative. For example:

>>> import re

>>> url = 'http://www.python.org'

>>> re.match('http:|https:|ftp:', url)
<_sre.SRE_Match object at 0x101253098>

>>>

This works, but is often overkill for simple matching. Using this recipe is simpler and
runs faster.

Last, but not least, the startswith() and endswith() methods look nice when com-
bined with other operations, such as common data reductions. For example, this state-
ment that checks a directory for the presence of certain kinds of files:

if any(name.endswith(('.c', '.h')) for name in listdir(dirname)):

2.3. Matching Strings Using Shell Wildcard Patterns

Problem

You want to match text using the same wildcard patterns as are commonly used when
working in Unix shells (e.g., *.py, Dat[0-9]*.csv, etc.).

Solution

The famatch module provides two functions—fnmatch() and fnmatchcase()—that
can be used to perform such matching. The usage is simple:

>>> from fnmatch import fnmatch, fnmatchcase
>>> fnmatch('foo.txt', '*.txt')

True

>>> fnmatch('foo.txt', '?o00.txt')

True

>>> fnmatch('Dat45.csv', 'Dat[0-9]*")

40 | Chapter2:Strings and Text

True

>>> names = ['Datl.csv', 'Dat2.csv', 'config.ini', 'foo.py']
>>> [name for name in names if fnmatch(name, 'Dat*.csv')]
['Datl.csv', 'Dat2.csv']

>>>

Normally, famatch() matches patterns using the same case-sensitivity rules as the sys-
tem’s underlying filesystem (which varies based on operating system). For example:

>>> # 0On 0S X (Mac)
>>> fnomatch('foo.txt', '*.TXT')
False

>>> # On Windows

>>> fnomatch('foo.txt', '*.TXT')
True

>>>

If this distinction matters, use fnmatchcase() instead. It matches exactly based on the
lower- and uppercase conventions that you supply:

>>> fnmatchcase('foo.txt', '"*.TXT')
False
>>>

An often overlooked feature of these functions is their potential use with data processing
of nonfilename strings. For example, suppose you have a list of street addresses like this:

[

addresses =
'5412 N CLARK ST',
'1060 W ADDISON ST',
'1039 W GRANVILLE AVE',
'2122 N CLARK ST',
'4802 N BROADWAY',

1

You could write list comprehensions like this:

>>> from fnmatch import fnmatchcase

>>> [addr for addr in addresses if fnmatchcase(addr, '* ST')]

['5412 N CLARK ST', '1060 W ADDISON ST', '2122 N CLARK ST']

>>> [addr for addr in addresses if fnmatchcase(addr, '54[0-9][0-9] *CLARK*')]
['5412 N CLARK ST']

>>>

Discussion

The matching performed by fnmatch sits somewhere between the functionality of sim-
ple string methods and the full power of regular expressions. If you're just trying to
provide a simple mechanism for allowing wildcards in data processing operations, it’s
often a reasonable solution.

2.3. Matching Strings Using Shell Wildcard Patterns | 41

If youre actually trying to write code that matches filenames, use the glob module
instead. See Recipe 5.13.

2.4. Matching and Searching for Text Patterns

Problem

You want to match or search text for a specific pattern.

Solution

If the text you're trying to match is a simple literal, you can often just use the basic string
methods, such as str.find(), str.endswith(), str.startswith(), or similar. For
example:

>>> text = 'yeah, but no, but yeah, but no, but yeah'

>>> # Exact match
>>> text == 'yeah'
False

>>> # Match at start or end
>>> text.startswith('yeah')
True

>>> text.endswith('no')
False

>>> # Search for the location of the first occurrence
>>> text.find('no')
10

>>>

For more complicated matching, use regular expressions and the re module. To illus-
trate the basic mechanics of using regular expressions, suppose you want to match dates
specified as digits, such as “11/27/2012” Here is a sample of how you would do it:

>>> textl '11/27/2012'
>>> text2 = 'Nov 27, 2012'
>>>
>>> import re
>>> # Simple matching: \d+ means match one or more digits
>>> if re.match(r'\d+/\d+/\d+', textl):
print('yes')
... else:
print('no')

yes
>>> if re.match(r'\d+/\d+/\d+', text2):
print('yes')
.. else:

42 | Chapter 2:Strings and Text

print('no')

no
>>>

If youre going to perform a lot of matches using the same pattern, it usually pays to
precompile the regular expression pattern into a pattern object first. For example:

>>> datepat = re.compile(r'\d+/\d+/\d+")
>>> if datepat.match(textl):
print('yes")
. else:
print('no')
yes
>>> if datepat.match(text2):
print('yes")
. else:
print('no')

no
>>>

match() always tries to find the match at the start of a string. If you want to search text
for all occurrences of a pattern, use the findall() method instead. For example:

>>> text = 'Today is 11/27/2012. PyCon starts 3/13/2013.'
>>> datepat.findall(text)
['11/27/2012', '3/13/2013']

>>>

When defining regular expressions, it is common to introduce capture groups by en-
closing parts of the pattern in parentheses. For example:

>>> datepat = re.compile(r'(\d+)/(\d+)/(\d+)")

>>>

Capture groups often simplify subsequent processing of the matched text because the
contents of each group can be extracted individually. For example:

>>> m = datepat.match('11/27/2012")
>>> M

<_sre.SRE_Match object at 0x1005d2750>

>>> # Extract the contents of each group
>>> m.group(0)

'11/27/2012'

>>> m.group(1)

11

>>> m.group(2)

197

>>> m.group(3)

'2012'

>>> m.groups()

2.4. Matching and Searching for Text Patterns | 43

('11', '27', '2012")
>>> month, day, year = m.groups()
>>>

>>> # Find all matches (notice splitting into tuples)

>>> text

'Today is 11/27/2012. PyCon starts 3/13/2013.'

>>> datepat.findall(text)

[('11', '27', '2012'), ('3', '13', '2013')]

>>> for month, day, year in datepat.findall(text):
print('{}-{}-{}'.format(year, month, day))

2012-11-27
2013-3-13

>>>

The findall() method searches the text and finds all matches, returning them as a list.
Ifyou want to find matches iteratively, use the finditer () method instead. For example:

>>> for m in datepat.finditer(text):
print(m.groups())

('11', '27', '2012")
('3', '"13', '2013")

>>>

Discussion

A basic tutorial on the theory of regular expressions is beyond the scope of this book.
However, this recipe illustrates the absolute basics of using the re module to match and
search for text. The essential functionality is first compiling a pattern using
re.compile() and then using methods such as match(), findall(), or finditer().

When specifying patterns, it is relatively common to use raw strings such as
r'(\d+)/(\d+)/(\d+)"'. Such strings leave the backslash character uninterpreted,
which can be useful in the context of regular expressions. Otherwise, you need to use
double backslashes such as ' (\\d+)/(\\d+)/(\\d+)".

Be aware that the match() method only checks the beginning of a string. It’s possible
that it will match things you aren’t expecting. For example:

>>> m = datepat.match('11/27/2012abcdef")
>>> M

<_sre.SRE_Match object at 0x1005d27e8>
>>> m.group()

'11/27/2012"

>>>

If you want an exact match, make sure the pattern includes the end-marker ($), as in
the following:

44 | Chapter 2:Strings and Text

>>> datepat = re.compile(r'(\d+)/(\d+)/(\d+)$")

>>> datepat.match('11/27/2012abcdef")

>>> datepat.match('11/27/2012")

<_sre.SRE_Match object at 0x1005d2750>

>>>
Last, if you're just doing a simple text matching/searching operation, you can often skip
the compilation step and use module-level functions in the re module instead. For
example:

>>> re.findall(r'(\d+)/(\d+)/(\d+)', text)

[('11', '27', '2012'), ('3', '13', '2013")]

>>>
Beaware, though, that if youre going to perform alot of matching or searching, it usually
pays to compile the pattern first and use it over and over again. The module-level func-
tions keep a cache of recently compiled patterns, so there isn’t a huge performance hit,
but you'll save a few lookups and extra processing by using your own compiled pattern.

2.5. Searching and Replacing Text

Problem

You want to search for and replace a text pattern in a string.

Solution
For simple literal patterns, use the str.replace() method. For example:

>>> text = 'yeah, but no, but yeah, but no, but yeah'

>>> text.replace('yeah', 'yep')
'yep, but no, but yep, but no, but yep'

>>>

For more complicated patterns, use the sub() functions/methods in the re module. To
illustrate, suppose you want to rewrite dates of the form “11/27/2012” as “2012-11-277
Here is a sample of how to do it:

>>> text = 'Today is 11/27/2012. PyCon starts 3/13/2013.'
>>> import re

>>> re.sub(r'(\d+)/(\d+)/(\d+)", r'\3-\1-\2', text)
'Today is 2012-11-27. PyCon starts 2013-3-13.'

>>>

The first argument to sub() is the pattern to match and the second argument is the
replacement pattern. Backslashed digits such as \3 refer to capture group numbers in
the pattern.

2.5. Searching and Replacing Text | 45

If youre going to perform repeated substitutions of the same pattern, consider compil-
ing it first for better performance. For example:

>>> import re

>>> datepat = re.compile(r'(\d+)/(\d+)/(\d+)")
>>> datepat.sub(r'\3-\1-\2', text)

'Today is 2012-11-27. PyCon starts 2013-3-13.'

>>>

For more complicated substitutions, it’s possible to specify a substitution callback func-
tion instead. For example:

>>> from calendar import month_abbr
>>> def change_date(m):
mon_name = month_abbr[int(m.group(1))]
return '{} {} {}'.format(m.group(2), mon_name, m.group(3))

>>> datepat.sub(change_date, text)

'Today is 27 Nov 2012. PyCon starts 13 Mar 2013.'

>>>
As input, the argument to the substitution callback is a match object, as returned by
match() or find(). Use the .group() method to extract specific parts of the match. The
function should return the replacement text.

If you want to know how many substitutions were made in addition to getting the
replacement text, use re.subn() instead. For example:

>>> newtext, n = datepat.subn(r'\3-\1-\2', text)

>>> newtext

'Today is 2012-11-27. PyCon starts 2013-3-13.'

>>> N

2

>>>

Discussion

There isn’t much more to regular expression search and replace than the sub() method
shown. The trickiest part is specifying the regular expression pattern—something that’s
best left as an exercise to the reader.

2.6. Searching and Replacing Case-Insensitive Text

Problem

You need to search for and possibly replace text in a case-insensitive manner.

46 | Chapter 2:Strings and Text

Solution

To perform case-insensitive text operations, you need to use the re module and supply
the re. IGNORECASE flag to various operations. For example:

>>> text = 'UPPER PYTHON, lower python, Mixed Python'
>>> re.findall('python', text, flags=re.IGNORECASE)
['PYTHON', 'python', 'Python']

>>> re.sub('python', 'snake', text, flags=re.IGNORECASE)
'UPPER snake, lower snake, Mixed snake'

>>>

The last example reveals a limitation that replacing text won’t match the case of the

matched text. If you need to fix this, you might have to use a support function, as in the
following:

def matchcase(word):
def replace(m):
text = m.group()
if text.isupper():
return word.upper()
elif text.islower():
return word. lower()
elif text[0].isupper():
return word.capitalize()
else:
return word
return replace

Here is an example of using this last function:

>>> re.sub('python', matchcase('snake'), text, flags=re.IGNORECASE)
'UPPER SNAKE, lower snake, Mixed Snake'
>>>

Discussion

For simple cases, simply providing the re.IGNORECASE is enough to perform case-
insensitive matching. However, be aware that this may not be enough for certain kinds
of Unicode matching involving case folding. See Recipe 2.10 for more details.

2.7. Specifying a Regular Expression for the Shortest
Match

Problem

You're trying to match a text pattern using regular expressions, but it is identifying the
longest possible matches of a pattern. Instead, you would like to change it to find the
shortest possible match.

2.7. Specifying a Regular Expression for the Shortest Match | 47

Solution

This problem often arises in patterns that try to match text enclosed inside a pair of
startingand ending delimiters (e.g., a quoted string). To illustrate, consider this example:

>>> str_pat = re.compile(r'\"(.*)\"")

>>> textl = 'Computer says "no."'

>>> str_pat.findall(textl)

['no."']

>>> text2 = 'Computer says "no." Phone says "yes."'

>>> str_pat.findall(text2)
['no." Phone says "yes.']
>>>

In this example, the pattern r'\"(.*)\""' is attempting to match text enclosed inside
quotes. However, the * operator in a regular expression is greedy, so matching is based
on finding the longest possible match. Thus, in the second example involving text?, it
incorrectly matches the two quoted strings.

To fix this, add the ? modifier after the * operator in the pattern, like this:

>>> str_pat = re.compile(r'\"(.*?2)\"")
>>> str_pat.findall(text2)

['mo.', 'yes.']

>>>

This makes the matching nongreedy, and produces the shortest match instead.

Discussion

This recipe addresses one of the more common problems encountered when writing
regular expressions involving the dot (.) character. In a pattern, the dot matches any
character except a newline. However, if you bracket the dot with starting and ending
text (such as a quote), matching will try to find the longest possible match to the pattern.
This causes multiple occurrences of the starting or ending text to be skipped altogether
and included in the results of the longer match. Adding the ? right after operators such
as * or + forces the matching algorithm to look for the shortest possible match instead.

2.8. Writing a Regular Expression for Multiline Patterns

Problem

You're trying to match a block of text using a regular expression, but you need the match
to span multiple lines.

48 | Chapter 2:Strings and Text

Solution

This problem typically arises in patterns that use the dot (.) to match any character but
forget to account for the fact that it doesn’t match newlines. For example, suppose you
are trying to match C-style comments:

>>> comment = re.compile(r'/*(.*2)*/")
>>> textl = '/* this is a comment */'

>>> text2 = /* this is a
multiline comment */

>>>

>>> comment.findall(text1)
[' this is a comment ']
>>> comment.findall(text2)

(]

To fix the problem, you can add support for newlines. For example:

>>> comment = re.compile(r'/*((2:.[\n)*2)*/")
>>> comment.findall(text2)

[' this is a\n multiline comment ']
>>>

In this pattern, (?:.]\n) specifies a noncapture group (i.e., it defines a group for the
purposes of matching, but that group is not captured separately or numbered).

Discussion

The re.compile() function accepts a flag, re.DOTALL, which is useful here. It makes
the . in a regular expression match all characters, including newlines. For example:

>>> comment = re.compile(r'/*(.*?)*/', re.DOTALL)
>>> comment.findall(text2)
[' this is a\n multiline comment ']

Using the re.DOTALL flag works fine for simple cases, but might be problematic if you're
working with extremely complicated patterns or a mix of separate regular expressions
that have been combined together for the purpose of tokenizing, as described in
Recipe 2.18. If given a choice, it’s usually better to define your regular expression pattern
so that it works correctly without the need for extra flags.

2.8. Writing a Regular Expression for Multiline Patterns | 49

2.9. Normalizing Unicode Text to a Standard
Representation

Problem

You're working with Unicode strings, but need to make sure that all of the strings have
the same underlying representation.

Solution

In Unicode, certain characters can be represented by more than one valid sequence of
code points. To illustrate, consider the following example:

>>> s1 = 'Spicy Jalape\u@0fio'
>>> s2 = 'Spicy Jalapen\u03030'

>>> sl

'Spicy Jalapefo'’
>>> s2

'Spicy Jalapefo'’
>>> sl == s2
False

>>> len(s1)

14

>>> len(s2)

15

>>>

Here the text “Spicy Jalapefio” has been presented in two forms. The first uses the fully

«~» «__»

composed “f1” character (U+00F1). The second uses the Latin letter “n” followed by a
“~” combining character (U+0303).

Having multiple representations is a problem for programs that compare strings. In
order to fix this, you should first normalize the text into a standard representation using
the unicodedata module:

>>> import unicodedata

>>> t1 = unicodedata.normalize('NFC', s1)
>>> t2 = unicodedata.normalize('NFC', s2)
>>> tl == t2

True

>>> print(ascii(tl))

'Spicy Jalape\xfio'

>>> t3 = unicodedata.normalize('NFD', s1)
>>> t4 = unicodedata.normalize('NFD', s2)
>>> t3 == t4

True

>>> print(ascii(t3))

'Spicy Jalapen\u03030'

>>>

50 | Chapter2:Strings and Text

The first argument to normalize() specifies how you want the string normalized. NFC
means that characters should be fully composed (i.e., use a single code point if possible).
NFD means that characters should be fully decomposed with the use of combining char-
acters.

Python also supports the normalization forms NFKC and NFKD, which add extra com-
patibility features for dealing with certain kinds of characters. For example:

>>> s = "\ufbo1' # A single character
>>> S

Ifil

>>> unicodedata.normalize('NFD', s)

Ifil

Notice how the combined letters are broken apart here
>>> unicodedata.normalize('NFKD', s)

|f.-L|

>>> unicodedata.normalize('NFKC', s)

If.‘L|

>>>

Discussion

Normalization is an important part of any code that needs to ensure that it processes
Unicode text in a sane and consistent way. This is especially true when processing strings
received as part of user input where you have little control of the encoding.

Normalization can also be an important part of sanitizing and filtering text. For example,
suppose you want to remove all diacritical marks from some text (possibly for the pur-
poses of searching or matching):

>>> t1 = unicodedata.normalize('NFD', s1)

>>> "' join(c for c in t1 if not unicodedata.combining(c))
'Spicy Jalapeno'

>>>

Thislast example shows another important aspect of the unicodedata module—namely,
utility functions for testing characters against character classes. The combining() func-

tion tests a character to see if it is a combining character. There are other functions in
the module for finding character categories, testing digits, and so forth.

Unicode is obviously a large topic. For more detailed reference information about nor-
malization, visit Unicode’s page on the subject. Ned Batchelder has also given an excel-
lent presentation on Python Unicode handling issues at his website.

2.9. Normalizing Unicode Text to a Standard Representation | 51

http://www.unicode.org/faq/normalization.html
http://nedbatchelder.com/text/unipain.html

2.10. Working with Unicode Characters in Regular
Expressions

Problem

You are using regular expressions to process text, but are concerned about the handling
of Unicode characters.

Solution

By default, the re module is already programmed with rudimentary knowledge of cer-
tain Unicode character classes. For example, \d already matches any unicode digit
character:

>>> import re

>>> num = re.compile('\d+')

>>> # ASCII digits

>>> pum.match('123")

<_sre.SRE_Match object at 0x1007d9edo>

>>> # Arabic digits

>>> num.match('\u0661\ub662\u0663')

<_sre.SRE_Match object at 0x101234030>

>>>
If you need to include specific Unicode characters in patterns, you can use the usual
escape sequence for Unicode characters (e.g., \uFFFF or \UFFFFFFF). For example, here
is a regex that matches all characters in a few different Arabic code pages:

>>> arabic = re.compile('[\u0600-\u06ff\u0750-\ud77f\u08a0-\uesff]+")

>>>
When performing matching and searching operations, it's a good idea to normalize and
possibly sanitize all text to a standard form first (see Recipe 2.9). However, it’s also
important to be aware of special cases. For example, consider the behavior of case-
insensitive matching combined with case folding:

>>> pat = re.compile('stra\ud0dfe', re.IGNORECASE)

>>> s = 'straRe'

>>> pat.match(s) # Matches
<_sre.SRE_Match object at 0x10069d370>

>>> pat.match(s.upper()) # Doesn't match
>>> s.upper() # Case folds
'STRASSE'

>>>

52 | Chapter2: Strings and Text

Discussion

Mixing Unicode and regular expressions is often a good way to make your head explode.
If you're going to do it seriously, you should consider installing the third-party regex
library, which provides full support for Unicode case folding, as well as a variety of other
interesting features, including approximate matching.

2.11. Stripping Unwanted Characters from Strings

Problem

You want to strip unwanted characters, such as whitespace, from the beginning, end, or
middle of a text string.

Solution

The strip() method can be used to strip characters from the beginning or end of a
string. Lstrip() and rstrip() perform stripping from the left or right side, respectively.
By default, these methods strip whitespace, but other characters can be given. For
example:

>>> # Whitespace stripping
>>> s = ' hello world \n'
>>> s.strip()

'"hello world'

>>> s.lstrip()

'hello world \n'

>>> s.rstrip()

! hello world'

>>>

>>> # Character stripping

55> t = 'oo--- hello====='
>>> t.lstrip('-")
"hello====="
>>> t.strip('-=")
'hello'
>>>

Discussion

The various strip() methods are commonly used when reading and cleaning up data
for later processing. For example, you can use them to get rid of whitespace, remove
quotations, and other tasks.

Be aware that stripping does not apply to any text in the middle of a string. For example:

2.11. Stripping Unwanted Characters from Strings | 53

http://pypi.python.org/pypi/regex
http://pypi.python.org/pypi/regex

>>> s " hello world \n'
>>> s = s.strip()

>>> S

'hello world'

>>>

If you needed to do something to the inner space, you would need to use another tech-
nique, such as using the replace() method or a regular expression substitution. For
example:

>>> s.replace(' ', '')
'"helloworld’

>>> import re
>>> re.sub('\s+',
'"hello world'

>>>

» S)

Itis often the case that you want to combine string stripping operations with some other
kind of iterative processing, such as reading lines of data from a file. If so, this is one
area where a generator expression can be useful. For example:

with open(filename) as f:

lines = (line.strip() for line in f)
for line in lines:

Here, the expression lines = (line.strip() for line in f) acts as a kind of data
transform. It’s efficient because it doesn't actually read the data into any kind of tem-
porary list first. It just creates an iterator where all of the lines produced have the strip-
ping operation applied to them.

For even more advanced stripping, you might turn to the translate() method. See the
next recipe on sanitizing strings for further details.

2.12. Sanitizing and Cleaning Up Text

Problem

Some bored script kiddie has entered the text “python” into a form on your web page
and youd like to clean it up somehow.

Solution

The problem of sanitizing and cleaning up text applies to a wide variety of problems
involving text parsing and data handling. At a very simple level, you might use basic
string functions (e.g., str.upper() and str. lower()) to convert text to a standard case.
Simple replacements using str.replace() or re.sub() can focus on removing or

54 | Chapter2: Strings and Text

changing very specific character sequences. You can also normalize text using unicode
data.normalize(), as shown in Recipe 2.9.

However, you might want to take the sanitation process a step further. Perhaps, for
example, you want to eliminate whole ranges of characters or strip diacritical marks. To
do so, you can turn to the often overlooked str.translate() method. To illustrate,
suppose you've got a messy string such as the following:

>>> s = 'python\fis\tawesome\r\n'

>>> S

'pythoi\x0cis\tawesome\r\n'

>>>
The first step is to clean up the whitespace. To do this, make a small translation table
and use translate():

>>> remap = {

ord("\t') : ' ',
ord('\f') : "',
ord('\r') : None # Deleted
-}
>>> a = s.translate(remap)
>>> a

'pythdi is awesome\n'

>>>
As you can see here, whitespace characters such as \ t and \ f have been remapped to a
single space. The carriage return \r has been deleted entirely.

You can take this remapping idea a step further and build much bigger tables. For ex-
ample, let’s remove all combining characters:

>>> import unicodedata

>>> import sys

>>> cmb_chrs = dict.fromkeys(c for c in range(sys.maxunicode)
if unicodedata.combining(chr(c)))

>>> b = unicodedata.normalize('NFD', a)
>>> b

'pythdi is awesome\n'

>>> b.translate(cmb_chrs)

'python is awesome\n'

>>>

In this last example, a dictionary mapping every Unicode combining character to None
is created using the dict. fromkeys().

The original input is then normalized into a decomposed form using unicodedata.nor
malize(). From there, the translate function is used to delete all of the accents. Similar
techniques can be used to remove other kinds of characters (e.g., control characters,
etc.).

2.12. Sanitizing and Cleaning Up Text | 55

As another example, here is a translation table that maps all Unicode decimal digit
characters to their equivalent in ASCII:

>>> digitmap = { c: ord('0') + unicodedata.digit(chr(c))
.. for ¢ in range(sys.maxunicode)
if unicodedata.category(chr(c)) == 'Nd' }

>>> len(digitmap)

460

>>> # Arabic digits

>>> X = '\u0661\u0662\u0663’

>>> x.translate(digitmap)

‘123"

>>>
Yet another technique for cleaning up text involves I/O decoding and encoding func-
tions. The idea here is to first do some preliminary cleanup of the text, and then run it
through a combination of encode() or decode() operations to strip or alter it. For
example:

>>> a

'pythéi is awesome\n'

>>> b = unicodedata.normalize('NFD', a)

>>> b.encode('ascil', 'ignore').decode('ascii')
'python is awesome\n'

>>>

Here the normalization process decomposed the original text into characters along with
separate combining characters. The subsequent ASCII encoding/decoding simply dis-
carded all of those characters in one fell swoop. Naturally, this would only work if getting
an ASCII representation was the final goal.

Discussion

A major issue with sanitizing text can be runtime performance. As a general rule, the
simpler it is, the faster it will run. For simple replacements, the str.replace() method
is often the fastest approach—even if you have to call it multiple times. For instance, to
clean up whitespace, you could use code like this:

def clean_spaces(s):
s = s.replace('\r', ')
s = s.replace('\t', ' ")
s = s.replace('\f', ' ")
return s

If you try it, you'll find that it’s quite a bit faster than using translate() or an approach
using a regular expression.

On the other hand, the translate() method is very fast if you need to perform any
kind of nontrivial character-to-character remapping or deletion.

56 | Chapter2: Strings and Text

In the big picture, performance is something you will have to study further in your
particular application. Unfortunately, it's impossible to suggest one specific technique
that works best for all cases, so try different approaches and measure it.

Although the focus of this recipe has been text, similar techniques can be applied to
bytes, including simple replacements, translation, and regular expressions.

2.13. Aligning Text Strings

Problem

You need to format text with some sort of alignment applied.

Solution

For basic alignment of strings, the 1just(), rjust(), and center () methods of strings
can be used. For example:

>>> text = 'Hello World'
>>> text.ljust(20)
'"Hello World !
>>> text.rjust(20)

! Hello World'
>>> text.center(20)

! Hello World !

>>>

All of these methods accept an optional &&65.180&&fill character as well. For example:

>>> text.rjust(20,'=")

'=========Hello World'

>>> text.center(20,'*")
"*xxkHello World** '

>>>

The format() function can also be used to easily align things. All you need to do is use
the <, >, or ~ characters along with a desired width. For example:

>>> format(text, '>20')
! Hello World'
>>> format(text, '<20')
'Hello World !
>>> format(text, '~20')
! Hello World !

>>>

If you want to include a fill character other than a space, specify it before the alignment
character:

>>> format(text, '=>20s')
'=========Hello World'

2.13. Aligning Text Strings | 57

>>> format(text, '*720s')
"**x*¥Hello World****x*'
>>>

These format codes can also be used in the format() method when formatting multiple
values. For example:

>>> '{:>10s} {:>10s}'.format('Hello', 'World')
! Hello World'

>>>
One benefit of format() is that it is not specific to strings. It works with any value,
making it more general purpose. For instance, you can use it with numbers:

>>> X = 1.2345

>>> format(x, '>10')

' 1.2345

>>> format(x, '~10.2f'")

! 1.23 !

>>>

Discussion

In older code, you will also see the % operator used to format text. For example:

>>> '%-20s' % text
'Hello World !
>>> '%20s' % text

! Hello World'

>>>

However, in new code, you should probably prefer the use of the format() function or
method. format() is a lot more powerful than what is provided with the % operator.
Moreover, format() is more general purpose than using the jlust(), rjust(), or
center () method of strings in that it works with any kind of object.

For a complete list of features available with the format() function, consult the online
Python documentation.

2.14. Combining and Concatenating Strings

Problem

You want to combine many small strings together into a larger string.

Solution

If the strings you wish to combine are found in a sequence or iterable, the fastest way
to combine them is to use the join() method. For example:

58 | Chapter2: Strings and Text

http://docs.python.org/3/library/string.html#formatspec
http://docs.python.org/3/library/string.html#formatspec

>>> parts = ['Is', 'Chicago', 'Not', 'Chicago?']
>>> ' '.join(parts)

'Is Chicago Not Chicago?'

>>> ', '.join(parts)

'Is,Chicago,Not,Chicago?"’

>>> "' joiln(parts)

'IsChicagoNotChicago?'

>>>

At first glance, this syntax might look really odd, but the join() operation is specified
as a method on strings. Partly this is because the objects you want to join could come
from any number of different data sequences (e.g., lists, tuples, dicts, files, sets, or gen-
erators), and it would be redundant to have join() implemented as a method on all of
those objects separately. So you just specify the separator string that you want and use
the join() method on it to glue text fragments together.

If you're only combining a few strings, using + usually works well enough:

>>> a = 'Is Chicago'
>>> b = 'Not Chicago?'
>>>a+ ' ' +b

'Is Chicago Not Chicago?'
>>>

The + operator also works fine as a substitute for more complicated string formatting
operations. For example:

>>> print('{} {}'.format(a,b))
Is Chicago Not Chicago?

>>> print(a + ' ' + b)

Is Chicago Not Chicago?

>>>

If you're trying to combine string literals together in source code, you can simply place
them adjacent to each other with no + operator. For example:

>>> a3 = 'Hello' 'World'
>>> a
'HelloWorld'

>>>

Discussion

Joining strings together might not seem advanced enough to warrant an entire recipe,
but it’s often an area where programmers make programming choices that severely
impact the performance of their code.

The most important thing to know is that using the + operator to join a lot of strings
together is grossly inefficient due to the memory copies and garbage collection that
occurs. In particular, you never want to write code that joins strings together like this:

2.14. Combining and Concatenating Strings | 59

G-
for p in parts:
S +=p
This runs quite a bit slower than using the join() method, mainly because each +=
operation creates a new string object. You're better off just collecting all of the parts first

and then joining them together at the end.

One related (and pretty neat) trick is the conversion of data to strings and concatenation
at the same time using a generator expression, as described in Recipe 1.19. For example:

>>> data = ['ACME', 50, 91.1]
>>> ', '.join(str(d) for d in data)
'ACME,50,91.1"

>>>

Also be on the lookout for unnecessary string concatenations. Sometimes programmers
get carried away with concatenation when it’s really not technically necessary. For ex-
ample, when printing:

print(a + ':' + b+ "' +) # Ugly
print(':'.join([a, b, c])) # Still ugly
print(a, b, c, sep=':") # Better

Mixing I/O operations and string concatenation is something that might require study
in your application. For example, consider the following two code fragments:

Version 1 (string concatenation)
f.write(chunkl + chunk2)

Version 2 (separate I/0 operations)
f.write(chunk1)
f.write(chunk?2)

If the two strings are small, the first version might offer much better performance due
to the inherent expense of carrying out an I/O system call. On the other hand, if the two
strings are large, the second version may be more efficient, since it avoids making a large
temporary result and copying large blocks of memory around. Again, it must be stressed
that this is something you would have to study in relation to your own data in order to
determine which performs best.

Last, but notleast, if you're writing code that is building output from lots of small strings,
you might consider writing that code as a generator function, using yield to emit frag-
ments. For example:

def sample():
yield 'Is'
yield 'Chicago'’
yield 'Not'
yield 'Chicago?'

60 | Chapter2: Strings and Text

The interesting thing about this approach is that it makes no assumption about how the
fragments are to be assembled together. For example, you could simply join the frag-
ments using join():

text = ''.join(sample())
Or you could redirect the fragments to I/O:

for part in sample():
f.write(part)

Or you could come up with some kind of hybrid scheme that’s smart about combining
I/O operations:

def combine(source, maxsize):
parts = []
size = 0
for part in source:
parts.append(part)
size += len(part)
if size > maxsize:
yield ''.join(parts)
parts = []
size = 0
yield ''.join(parts)

for part in combine(sample(), 32768):
f.write(part)

The key point is that the original generator function doesn’t have to know the precise
details. It just yields the parts.

2.15. Interpolating Variables in Strings

Problem

You want to create a string in which embedded variable names are substituted with a
string representation of a variable’s value.

Solution

Python has no direct support for simply substituting variable values in strings. However,
this feature can be approximated using the format() method of strings. For example:

>>> s = '{name} has {n} messages.'
>>> s.format(name='Guido', n=37)
'Guido has 37 messages.'

>>>

2.15. Interpolating Variables in Strings | 61

Alternatively, if the values to be substituted are truly found in variables, you can use the
combination of format_map() and vars(), as in the following:

>>> name = 'Guido'

>>> n = 37

>>> s.format_map(vars())
'Guido has 37 messages.'
>>>

One subtle feature of vars() is that it also works with instances. For example:

>>> class Info:
def __init__(self, name, n):
self.name = name
self.n = n

>>> a = Info('Guido',37)

>>> s.format_map(vars(a))
'Guido has 37 messages.'

>>>

One downside of format() and format_map() is that they do not deal gracefully with
missing values. For example:

>>> s.format(name='Guido')

File "<stdin>", line 1, in <module>

KeyError: 'n
>>>
One way to avoid this is to define an alternative dictionary class with a __miss
ing__() method, as in the following:
class safesub(dict):

def _ missing__(self, key):
return '{' + key + '}'

Now use this class to wrap the inputs to format_map():

>>> del n # Make sure n is undefined
>>> s.format_map(safesub(vars()))

'Guido has {n} messages.'

>>>

If you find yourself frequently performing these steps in your code, you could hide the
variable substitution process behind a small utility function that employs a so-called
“frame hack” For example:

import sys

def sub(text):
return text.format_map(safesub(sys._getframe(1).f_locals))

Now you can type things like this:

62 | Chapter2: Strings and Text

>>> name = 'Guido’

>>> n = 37

>>> print(sub('Hello {name}'))

Hello Guido

>>> print(sub('You have {n} messages.'))

You have 37 messages.

>>> print(sub('Your favorite color is {color}'))
Your favorite color is {color}

>>>

Discussion

The lack of true variable interpolation in Python has led to a variety of solutions over
the years. As an alternative to the solution presented in this recipe, you will sometimes
see string formatting like this:

>>> name = 'Guido'

>>> n = 37

>>> '%(name) has %(n) messages.' % vars()

'Guido has 37 messages.'
>>>

You may also see the use of template strings:

>>> import string

>>> s = string.Template('Sname has $n messages.')

>>> s.substitute(vars())

'Guido has 37 messages.'

>>>
However, the format() and format_map() methods are more modern than either of
these alternatives, and should be preferred. One benefit of using format() is that you
also get all of the features related to string formatting (alignment, padding, numerical
formatting, etc.), which is simply not possible with alternatives such as Template string
objects.

Parts of this recipe also illustrate a few interesting advanced features. The little-known
__missing__() method of mapping/dict classes is a method that you can define to
handle missing values. In the safesub class, this method has been defined to return
missing values back as a placeholder. Instead of getting a KeyError exception, you
would see the missing values appearing in the resulting string (potentially useful for

debugging).

The sub() function uses sys._getframe(1) to return the stack frame of the caller. From
that, the f_locals attribute is accessed to get the local variables. It goes without saying
that messing around with stack frames should probably be avoided in most code. How-
ever, for utility functions such as a string substitution feature, it can be useful. As an
aside, it’s probably worth noting that f_locals is a dictionary that is a copy of the local
variables in the calling function. Although you can modify the contents of f_locals,

2.15. Interpolating Variables in Strings | 63

the modifications don’t actually have any lasting effect. Thus, even though accessing a
different stack frame might look evil, it’s not possible to accidentally overwrite variables
or change the local environment of the caller.

2.16. Reformatting Text to a Fixed Number of Columns

Problem

You have long strings that you want to reformat so that they fill a user-specified number
of columns.

Solution

Use the textwrap module to reformat text for output. For example, suppose you have
the following long string:

s = "Look into my eyes, look into my eyes, the eyes, the eyes, \
the eyes, not around the eyes, don't look around the eyes, \
look into my eyes, you're under."

Here’s how you can use the textwrap module to reformat it in various ways:

>>> import textwrap

>>> print(textwrap.fill(s, 70))

Look into my eyes, look into my eyes, the eyes, the eyes, the eyes,
not around the eyes, don't look around the eyes, look into my eyes,
you're under.

>>> print(textwrap.fill(s, 40))

Look into my eyes, look into my eyes,
the eyes, the eyes, the eyes, not around
the eyes, don't look around the eyes,
look into my eyes, you're under.

>>> print(textwrap.fill(s, 40, initial_indent=' "))
Look into my eyes, look into my

eyes, the eyes, the eyes, the eyes, not

around the eyes, don't look around the

eyes, look into my eyes, you're under.

>>> print(textwrap.fill(s, 40, subsequent_indent=' "))
Look into my eyes, look into my eyes,

the eyes, the eyes, the eyes, not

around the eyes, don't look around

the eyes, look into my eyes, you're

under.

64 | Chapter2: Strings and Text

Discussion

The textwrap module is a straightforward way to clean up text for printing—especially
if you want the output to fit nicely on the terminal. On the subject of the terminal size,
you can obtain it using os.get_terminal_size(). For example:

>>> import os
>>> os.get_terminal_size().columns
80

>>>

The fi11() method has a few additional options that control how it handles tabs, sen-
tence endings, and so on. Look at the documentation for the textwrap.TextWrapper
class for further details.

2.17. Handling HTML and XML Entities in Text

Problem

You want to replace HTML or XML entities such as &entity; or &#code; with their
corresponding text. Alternatively, you need to produce text, but escape certain charac-
ters (e.g., <, >, or &).

Solution

If you are producing text, replacing special characters such as < or > is relatively easy if
you use the html.escape() function. For example:

>>> s = 'Elements are written as "<tag>text</tag>".'

>>> import html

>>> print(s)

Elements are written as "<tag>text</tag>".

>>> print(html.escape(s))

Elements are written as "<tag>text</tag>".

>>> # Disable escaping of quotes

>>> print(html.escape(s, quote=False))

Elements are written as "<tag>text</tag>".
>>>

If you're trying to emit text as ASCII and want to embed character code entities for non-
ASCII characters, you can use the errors="'xmlcharrefreplace' argument to various
I/O-related functions to do it. For example:

>>> s = 'Spicy Jalapefo'

>>> s.encode('ascii', errors='xmlcharrefreplace')

b'Spicy Jalapeñ0'

>>>

2.17. Handling HTML and XML Entitiesin Text | 65

http://docs.python.org/3.3/library/textwrap.html#textwrap.TextWrapper
http://docs.python.org/3.3/library/textwrap.html#textwrap.TextWrapper

To replace entities in text, a different approach is needed. If you're actually processing
HTML or XML, try using a proper HTML or XML parser first. Normally, these tools
will automatically take care of replacing the values for you during parsing and you don’t
need to worry about it.

If, for some reason, you've received bare text with some entities in it and you want them
replaced manually, you can usually do it using various utility functions/methods asso-
ciated with HTML or XML parsers. For example:

>>> s = 'Spicy "Jalapeño08". "'

>>> from html.parser import HTMLParser

>>> p = HTMLParser()
>>> p.unescape(s)

'Spicy "Jalapeio".
>>>

>>> t = 'The prompt is >>>"'

>>> from xml.sax.saxutils import unescape
>>> unescape(t)

'The prompt is >>>'

>>>

Discussion

Proper escaping of special characters is an easily overlooked detail of generating HTML
or XML. This is especially true if you're generating such output yourself using print()
or other basic string formatting features. Using a utility function such as html.es
cape() is an easy solution.

If you need to process text in the other direction, various utility functions, such as
xml.sax.saxutils.unescape(), can help. However, you really need to investigate the
use of a proper parser. For example, if processing HTML or XML, using a parsing mod-
ule such as html.parser or xml.etree.ElementTree should already take care of details
related to replacing entities in the input text for you.

2.18. Tokenizing Text

Problem

You have a string that you want to parse left to right into a stream of tokens.

Solution

Suppose you have a string of text such as this:

text = 'foo = 23 + 42 * 10'

66 | Chapter2: Strings and Text

To tokenize the string, you need to do more than merely match patterns. You need to
have some way to identify the kind of pattern as well. For instance, you might want to
turn the string into a sequence of pairs like this:

tokens = [('NAME', 'foo'), ('EQ','="), ('NUM', '23'), ('PLUS','+"),
('NUM', '42'), ('TIMES', '*'), ('NUM', 10')]

To do this kind of splitting, the first step is to define all of the possible tokens, including
whitespace, by regular expression patterns using named capture groups such as this:

import re

NAME = r'(?P<NAME>[a-zA-Z_][a-zA-Z_0-9]%)"
NUM = r'(?P<NUM>\d+)'

PLUS = r'(?P<PLUS>\+)'

TIMES = r'(?P<TIMES>*)'

EQ = r'(?P<EQ>=)"

WS r' (?P<WS>\s+)'

master_pat = re.compile('|'.join([NAME, NUM, PLUS, TIMES, EQ, WS]))

In these re patterns, the ?P<TOKENNAME> convention is used to assign a name to the
pattern. This will be used later.

Next, to tokenize, use the little-known scanner() method of pattern objects. This
method creates a scanner object in which repeated calls to match() step through the
supplied text one match at a time. Here is an interactive example of how a scanner object
works:

>>> scanner = master_pat.scanner('foo = 42")
>>> scanner.match()

<_sre.SRE_Match object at 0x100677738>
>>> _.lastgroup, _.group()

('NAME', 'foo')

>>> scanner.match()

<_sre.SRE_Match object at 0x100677738>
>>> _.lastgroup, _.group()

('ws', " M)

>>> scanner.match()

<_sre.SRE_Match object at 0x100677738>
>>> _.lastgroup, _.group()

('EQ', '=")

>>> scanner.match()

<_sre.SRE_Match object at 0x100677738>
>>> _.lastgroup, _.group()

('ws', " ")

>>> scanner.match()

<_sre.SRE_Match object at 0x100677738>
>>> _.lastgroup, _.group()

('NUM', '42")

>>> scanner.match()

>>>

2.18.Tokenizing Text | 67

To take this technique and put it into code, it can be cleaned up and easily packaged
into a generator like this:

from collections import namedtuple
Token = namedtuple('Token', ['type','value'])

def generate_tokens(pat, text):
scanner = pat.scanner(text)
for m in iter(scanner.match, None):
yield Token(m.lastgroup, m.group())

Example use
for tok in generate_tokens(master_pat, 'foo = 42'):
print(tok)

Produces output
Token(type='NAME', value='foo')
Token(type="WS', value=' ")
Token(type="EQ', value='=")
Token(type="WS', value=' ")
Token(type='NUM', value='42")

RO OR ™R

If you want to filter the token stream in some way, you can either define more generator
functions or use a generator expression. For example, here is how you might filter out
all whitespace tokens.

tokens = (tok for tok in generate_tokens(master_pat, text)
if tok.type != '"WS')
for tok in tokens:
print(tok)

Discussion

Tokenizing is often the first step for more advanced kinds of text parsing and handling.
To use the scanning technique shown, there are a few important details to keep in mind.
First, you must make sure that you identify every possible text sequence that might
appear in the input with a correponding re pattern. If any nonmatching text is found,
scanning simply stops. This is why it was necessary to specify the whitespace (WS) token
in the example.

The order of tokens in the master regular expression also matters. When matching, re

tries to match pattens in the order specified. Thus, if a pattern happens to be a substring

of a longer pattern, you need to make sure the longer pattern goes first. For example:
LT = r'(?P<LT><)’

LE = r'(?P<LE><=)"
EQ = r'(?P<EQ>=)’

master_pat = re.compile('|'.join([LE, LT, EQ])) # Correct
master_pat = re.compile('['.join([LT, LE, EQ])) # Incorrect

68 | Chapter2: Strings and Text

The second pattern is wrong because it would match the text <= as the token LT followed
by the token EQ, not the single token LE, as was probably desired.

Last, but not least, you need to watch out for patterns that form substrings. For example,
suppose you have two pattens like this:

PRINT = r'(P<PRINT>print)’'
NAME = r'(P<NAME>[a-zA-Z_][a-zA-Z_0-9]%)"

master_pat = re.compile('|'.join([PRINT, NAME]))

for tok in generate_tokens(master_pat, 'printer'):
print(tok)

Outputs :

Token(type='PRINT', value='print')

Token(type='NAME', value='er')
For more advanced kinds of tokenizing, you may want to check out packages such as
PyParsing or PLY. An example involving PLY appears in the next recipe.

2.19. Writing a Simple Recursive Descent Parser

Problem

You need to parse text according to a set of grammar rules and perform actions or build
an abstract syntax tree representing the input. The grammar is small, so you'd prefer to
just write the parser yourself as opposed to using some kind of framework.

Solution

In this problem, we're focused on the problem of parsing text according to a particular
grammar. In order to do this, you should probably start by having a formal specification
of the grammar in the form of a BNF or EBNE For example, a grammar for simple
arithmetic expressions might look like this:

expr ::= expr + term

| expr - term
| term

term ::= term * factor
| term / factor
| factor

factor ::= (expr)
| NumM

Or, alternatively, in EBNF form:

2.19. Writing a Simple Recursive Descent Parser | 69

http://pyparsing.wikispaces.com
http://www.dabeaz.com/ply/index.html

expr ::= term { (+]|-) term }*

term ::= factor { (*|/) factor }*
factor ::= (expr)
| NUM
Inan EBNE partsofaruleenclosedin { ... }*areoptional. The * means zero or more

repetitions (the same meaning as in a regular expression).

Now, if you're not familiar with the mechanics of working with a BNF, think of it as a
specification of substitution or replacement rules where symbols on the left side can be
replaced by the symbols on the right (or vice versa). Generally, what happens during
parsing is that you try to match the input text to the grammar by making various sub-
stitutions and expansions using the BNE To illustrate, suppose you are parsing an ex-
pression such as 3 + 4 * 5. This expression would first need to be broken down into
a token stream, using the techniques described in Recipe 2.18. The result might be a
sequence of tokens like this:

NUM + NUM * NUM

From there, parsing involves trying to match the grammar to input tokens by making
substitutions:

expr

expr ::= term { (+]|-) term }*

expr ::= factor { (*|/) factor }* { (+]|-) term }*

expr ::= NUM { (*|/) factor }* { (+|-) term }*

expr ::= NUM { (+|-) term }*

expr ::= NUM + term { (+|-) term }*

expr ::= NUM + factor { (*|/) factor }* { (+|-) term }*
expr ::= NUM + NUM { (*|/) factor}* { (+|-) term }*

expr ::= NUM + NUM * factor { (*|/) factor }* { (+|-) term }*
expr ::= NUM + NUM * NUM { (*|/) factor }* { (+|-) term }*
expr ::= NUM + NUM * NUM { (+]-) term }*

expr ::= NUM + NUM * NUM

Following all of the substitution steps takes a bit of coffee, but they’re driven by looking
at the input and trying to match it to grammar rules. The first input token is a NUM, so
substitutions first focus on matching that part. Once matched, attention moves to the
next token of + and so on. Certain parts of the righthand side (e.g., { (*/) fac
tor }*) disappear when it’s determined that they can’t match the next token. In a suc-
cessful parse, the entire righthand side is expanded completely to match the input token
stream.

With all of the preceding background in place, here is a simple recipe that shows how
to build a recursive descent expression evaluator:

import re
import collections

70 | Chapter2: Strings and Text

Token specification

NUM = r'(?P<NUM>\d+)'
PLUS = r'(?P<PLUS>\+)'
MINUS = r'(?P<MINUS>-)
TIMES = r'(?P<TIMES>*)'
DIVIDE = r'(?P<DIVIDE>/)'
LPAREN = r'(?P<LPAREN>\()'
RPAREN = r'(?P<RPAREN>\))"'
WS = r'"(?7P<WS>\s+)'

master_pat = re.compile('|'.join([NUM, PLUS, MINUS, TIMES,
DIVIDE, LPAREN, RPAREN, WS]))

Tokenizer
Token = collections.namedtuple('Token', ['type','value'])

def generate_tokens(text):
scanner = master_pat.scanner(text)
for m in iter(scanner.match, None):
tok = Token(m.lastgroup, m.group())
if tok.type != '"WS':
yield tok

Parser

class ExpressionEvaluator:
Implementation of a recursive descent parser. Each method
implements a single grammar rule. Use the ._accept() method
to test and accept the current lookahead token. Use the ._expect()
method to exactly match and discard the next token on on the input
(or raise a SyntaxError if it doesn't match).

T

def parse(self,text):
self.tokens = generate_tokens(text)

self.tok = None # Last symbol consumed
self.nexttok = None # Next symbol tokenized
self._advance() # Load first lookahead token

return self.expr()

def _advance(self):
'Advance one token ahead'
self.tok, self.nexttok = self.nexttok, next(self.tokens, None)

def _accept(self,toktype):
'Test and consume the next token if it matches toktype'
if self.nexttok and self.nexttok.type == toktype:
self._advance()
return True
else:
return False

2.19. Writing a Simple Recursive Descent Parser

n

def _expect(self,toktype):
'Consume next token if it matches toktype or raise SyntaxError'
if not self._accept(toktype):
raise SyntaxError('Expected ' + toktype)

Grammar rules follow

def expr(self):
"expression ::= term { ('+'|'-") term }*"

exprval = self.term()
while self._accept('PLUS') or self._accept('MINUS'):
op = self.tok.type
right = self.term()
if op == 'PLUS':
exprval += right
elif op == 'MINUS':
exprval -= right
return exprval

def term(self):
"term ::= factor { ('*'|'/') factor }*"

termval = self.factor()
while self._accept('TIMES') or self._accept('DIVIDE'):
op = self.tok.type
right = self.factor()
if op == 'TIMES':
termval *= right
elif op == 'DIVIDE':
termval /= right
return termval

def factor(self):
"factor ::= NUM | (expr)"

if self._accept('NUM'):
return int(self.tok.value)
elif self._accept('LPAREN'):
exprval = self.expr()
self._expect('RPAREN")
return exprval
else:
raise SyntaxError('Expected NUMBER or LPAREN')

Here is an example of using the ExpressionEvaluator class interactively:

>>> e = ExpressionEvaluator()
>>> e.parse('2')

2

>>> e.parse('2 + 3")

5

72 | Chapter2: Strings and Text

>>> e.parse('2 + 3 * 4")

14

>>> e.parse('2 + (3 + 4) * 5")
37

>>> e.parse('2 + (3 + * 4)")

File "<stdin>", 1ine 1, in <module>
File "exprparse.py", line 40, in parse
return self.expr()
File "exprparse.py", line 67, in expr
right = self.term()
File "exprparse.py", line 77, in term
termval = self.factor()
File "exprparse.py", line 93, in factor
exprval = self.expr()
File "exprparse.py", line 67, in expr
right = self.term()
File "exprparse.py", line 77, in term
termval = self.factor()
File "exprparse.py", line 97, in factor
raise SyntaxError("Expected NUMBER or LPAREN")
SyntaxError: Expected NUMBER or LPAREN
>>>

If you want to do something other than pure evaluation, you need to change the
ExpressionEvaluator class to do something else. For example, here is an alternative
implementation that constructs a simple parse tree:

class ExpressionTreeBuilder(ExpressionEvaluator):
def expr(self):
"expression ::= term { ('+'|'-') term }"

exprval = self.term()
while self._accept('PLUS') or self._accept('MINUS'):
op = self.tok.type
right = self.term()
if op == 'PLUS':
exprval = ('+', exprval, right)
elif op == 'MINUS':
exprval = ('-', exprval, right)
return exprval

def term(self):
"term ::= factor { ('*'|'/') factor }"

termval = self.factor()

while self._accept('TIMES') or self._accept('DIVIDE'):
op = self.tok.type
right = self.factor()

if op == 'TIMES':
termval = ('*', termval, right)
elif op == 'DIVIDE':

2.19. Writing a Simple Recursive Descent Parser | 73

termval = ('/', termval, right)
return termval

def factor(self):
'factor ::= NUM | (expr)

if self._accept('NUM"):
return int(self.tok.value)
elif self._accept('LPAREN"):
exprval = self.expr()
self._expect('RPAREN")
return exprval
else:
raise SyntaxError('Expected NUMBER or LPAREN')

The following example shows how it works:

>>> e = ExpressionTreeBuilder()
>>> e.parse('2 + 3')

('+', 2, 3)

>>> e.parse('2 + 3 * 4")

(I+‘J 2’ (‘*'J 3’ 4))

>>> e.parse('2 + (3 + 4) * 5")
(I+‘J 2’ (‘*'J ('+I’ 3’ 4)! 5))
>>> e.parse('2 + 3 + 4")

(I+‘J (l+'J 2’ 3)! 4)

>>>

Discussion

Parsing is a huge topic that generally occupies students for the first three weeks of a
compilers course. If you are seeking background knowledge about grammars, parsing
algorithms, and other information, a compilers book is where you should turn. Needless
to say, all of that can’t be repeated here.

Nevertheless, the overall idea of writing a recursive descent parser is generally simple.
To start, you take every grammar rule and you turn it into a function or method. Thus,
if your grammar looks like this:

expr ::= term { ('+'|'-') term }*
term ::= factor { ('*'|'/') factor }*
factor ::= '(' expr ')’

| NUM

You start by turning it into a set of methods like this:

class ExpressionEvaluator:

def expr(self):

74 | Chapter2: Strings and Text

def term(self):

def factor(self):

The task of each method is simple—it must walk from left to right over each part of the
grammar rule, consuming tokens in the process. In a sense, the goal of the method is
to either consume the rule or generate a syntax error if it gets stuck. To do this, the
following implementation techniques are applied:

o If the next symbol in the rule is the name of another grammar rule (e.g., term or
factor), you simply call the method with the same name. This is the “descent” part
of the algorithm—control descends into another grammar rule. Sometimes rules
will involve calls to methods that are already executing (e.g., the call to expr in the
factor ::= '(' expr ')' rule). This is the “recursive” part of the algorithm.

o If the next symbol in the rule has to be a specific symbol (e.g., (), you look at the
next token and check for an exact match. If it doesn’t match, it’s a syntax error. The
_expect() method in this recipe is used to perform these steps.

o If the next symbol in the rule could be a few possible choices (e.g., + or -), you have
to check the next token for each possibility and advance only if a match is made.
This is the purpose of the _accept () method in this recipe. It’s kind of like a weaker
version of the _expect() method in that it will advance if a match is made, but if
not, it simply backs off without raising an error (thus allowing further checks to be
made).

o For grammar rules where there are repeated parts (e.g., such asin the ruleexpr ::=
term { ('+'|'-") term }*), the repetition gets implemented by a while loop.
The body of the loop will generally collect or process all of the repeated items until
no more are found.

o Once an entire grammar rule has been consumed, each method returns some kind
of result back to the caller. This is how values propagate during parsing. For ex-
ample, in the expression evaluator, return values will represent partial results of the
expression being parsed. Eventually they all get combined together in the topmost
grammar rule method that executes.

Although a simple example has been shown, recursive descent parsers can be used to
implement rather complicated parsers. For example, Python code itself is interpreted
by a recursive descent parser. If you're so inclined, you can look at the underlying gram-
mar by inspecting the file Grammar/Grammar in the Python source. That said, there
are still numerous pitfalls and limitations with making a parser by hand.

2.19. Writing a Simple Recursive Descent Parser | 75

One such limitation of recursive descent parsers is that they can't be written for grammar
rules involving any kind of left recursion. For example, suppose you need to translate a
rule like this:

items ::= items ',' item
| item

To do it, you might try to use the 1tems() method like this:

def items(self):
itemsval = self.items()
if itemsval and self._accept(','):
itemsval.append(self.item())
else:
itemsval = [self.item()]

The only problem is that it doesn’t work. In fact, it blows up with an infinite recursion
error.

You can also run into tricky issues concerning the grammar rules themselves. For ex-
ample, you might have wondered whether or not expressions could have been described
by this more simple grammar:

expr ::= factor { ('+'|'-"|'*"|"/") factor }*
factor ::= '(' expression ')'
| NuM

This grammar technically “works,” but it doesn’t observe the standard arithmetic rules
concerning order of evaluation. For example, the expression “3 + 4 * 5” would get eval-
uated as “35” instead of the expected result of “23” The use of separate “expr” and “term”
rules is there to make evaluation work correctly.

For really complicated grammars, you are often better off using parsing tools such as
PyParsing or PLY. This is what the expression evaluator code looks like using PLY:

from ply.lex import lex
from ply.yacc import yacc

Token list
tokens = ['NUM', 'PLUS', 'MINUS', 'TIMES', 'DIVIDE', 'LPAREN', 'RPAREN']

Ignored characters
t_ignore = ' \t\n'

Token specifications (as regexs)
t_PLUS = r'\+'
t_MINUS = r'-'
t_TIMES = r'*'
t_DIVIDE = r'/'
t_LPAREN = r'\('

76 | Chapter2: Strings and Text

http://pyparsing.wikispaces.com
http://www.dabeaz.com/ply/index.html

t_RPAREN = r'\)'

Token processing functions
def t_NUM(t):
r'\d+'
t.value = int(t.value)
return t

Error handler

def t_error(t):
print('Bad character: {!r}'.format(t.value[0]))
t.skip(1)

Build the lexer
lexer = lex()

Grammar rules and handler functions
def p_expr(p):
expr : expr PLUS term
| expr MINUS term

o

if p[2] == '+":
pLo] = p[1] + p[3]
elif p[2] == '-":

plo] = p[1] - p[3]

def p_expr_term(p):

T

expr : term

T

ple] = p[1]

def p_term(p):
term : term TIMES factor
| term DIVIDE factor
if p[2] == '*':
plo] = p[1] * p[3]
elif p[2] == '/":
plo] = p[1] / p[3]

def p_term_factor(p):

T

term : factor

T

ple] = p[1]

def p_factor(p):

T

factor : NUM

2.19. Writing a Simple Recursive Descent Parser | 77

rr

p[0] = p[1]
def p_factor_group(p):

rr

factor : LPAREN expr RPAREN

rr

plo] = p[2]

def p_error(p):
print('Syntax error')

parser = yacc()

In this code, you'll find that everything is specified at a much higher level. You simply
write regular expressions for the tokens and high-level handling functions that execute
when various grammar rules are matched. The actual mechanics of running the parser,
accepting tokens, and so forth is implemented entirely by the library.

Here is an example of how the resulting parser object gets used:

>>> parser.parse('2')

2

>>> parser.parse('2+3")

5

>>> parser.parse('2+(3+4)*5")
37

>>>

If you need a bit more excitement in your programming, writing parsers and compilers
can be a fun project. Again, a compilers textbook will have a lot of low-level details
underlying theory. However, many fine resources can also be found online. Python’s
own ast module is also worth a look.

2.20. Performing Text Operations on Byte Strings

Problem

You want to perform common text operations (e.g., stripping, searching, and replace-
ment) on byte strings.

Solution

Byte strings already support most of the same built-in operations as text strings. For
example:

78 | Chapter2: Strings and Text

>>> data = b'Hello World'

>>> data[0:5]

b'Hello'

>>> data.startswith(b'Hello")

True

>>> data.split()

[b'Hello', b'World']

>>> data.replace(b'Hello', b'Hello Cruel')
b'Hello Cruel World'

>>>
Such operations also work with byte arrays. For example:

>>> data = bytearray(b'Hello World')

>>> data[0:5]

bytearray(b'Hello')

>>> data.startswith(b'Hello')

True

>>> data.split()

[bytearray(b'Hello'), bytearray(b'World')]
>>> data.replace(b'Hello', b'Hello Cruel')
bytearray(b'Hello Cruel World')

>>>

You can apply regular expression pattern matching to byte strings, but the patterns
themselves need to be specified as bytes. For example:

>>>

>>> data = b'FO0:BAR,SPAM'
>>> import re

>>> re.split('[:,]',data)

File "<stdin>", 1ine 1, in <module>
File "/usr/local/lib/python3.3/re.py", line 191, in split
return _compile(pattern, flags).split(string, maxsplit)
TypeError: can't use a string pattern on a bytes-like object

>>> re.split(b'[:,]',data) # Notice: pattern as bytes
[b'FOO', b'BAR', b'SPAM']
>>>

Discussion

For the most part, almost all of the operations available on text strings will work on byte
strings. However, there are a few notable differences to be aware of. First, indexing of
byte strings produces integers, not individual characters. For example:

>>> a = 'Hello World' # Text string
>>> af0]

IHI

>>> af1]

e
>>> b = b'Hello World' # Byte string

2.20. Performing Text Operations on Byte Strings | 79

>>> b[0]
72
>>> b[1]
101

>>>

This difference in semantics can affect programs that try to process byte-oriented data
on a character-by-character basis.

Second, byte strings don’'t provide a nice string representation and don’t print cleanly
unless first decoded into a text string. For example:

>>> s = b'Hello World'

>>> print(s)

b'Hello World' # Observe b'...'
>>> print(s.decode('ascii'))

Hello World

>>>
Similarly, there are no string formatting operations available to byte strings.

>>> b'%10s %10d %10.2f' % (b'ACME', 100, 490.1)

File "<stdin>", 1ine 1, in <module>
TypeError: unsupported operand type(s) for %: 'bytes' and 'tuple'

>>> b'{} {} {}'.format(b'ACME', 100, 490.1)

File "<stdin>", line 1, in <module>
AttributeError: 'bytes' object has no attribute 'format'
>>>

If you want to do any kind of formatting applied to byte strings, it should be done using
normal text strings and encoding. For example:

>>> '{:10s} {:10d} {:10.2f}'.format('ACME', 100, 490.1).encode('ascii')
b'ACME 100 490.10'

>>>

Finally, you need to be aware that using a byte string can change the semantics of certain
operations—especially those related to the filesystem. For example, if you supply a file-
name encoded as bytes instead of a text string, it usually disables filename encoding/
decoding. For example:

>>> # Write a UTF-8 filename
>>> with open('jalape\xflo.txt', 'w') as f:
f.write('spicy')

>>> # Get a directory listing

>>> import os

>>> os.listdir('.") # Text string (names are decoded)
['jalapeno.txt']

80 | Chapter2: Strings and Text

>>> os.listdir(b'.") # Byte string (names left as bytes)

[b'jalapen\xcc\x830.txt"']

>>>
Notice in the last part of this example how giving a byte string as the directory name
caused the resulting filenames to be returned as undecoded bytes. The filename shown
in the directory listing contains raw UTF-8 encoding. See Recipe 5.15 for some related
issues concerning filenames.

As a final comment, some programmers might be inclined to use byte strings as an
alternative to text strings due to a possible performance improvement. Although it’s
true that manipulating bytes tends to be slightly more efficient than text (due to the
inherent overhead related to Unicode), doing so usually leads to very messy and noni-
diomatic code. You'll often find that byte strings don’t play well with a lot of other parts
of Python, and that you end up having to perform all sorts of manual encoding/decoding
operations yourself to get things to work right. Frankly, if youre working with text, use
normal text strings in your program, not byte strings.

2.20. Performing Text Operations on Byte Strings | 81

CHAPTER 3
Numbers, Dates, and Times

Performing mathematical calculations with integers and floating-point numbers is easy
in Python. However, if you need to perform calculations with fractions, arrays, or dates
and times, a bit more work is required. The focus of this chapter is on such topics.

3.1. Rounding Numerical Values

Problem

You want to round a floating-point number to a fixed number of decimal places.

Solution

For simple rounding, use the built-in round(value, ndigits) function. For example:

>>> round(1.23, 1)

1.2

>>> round(1.27, 1)
1.3

>>> round(-1.27, 1)
-1.3

>>> round(1.25361,3)
1.254

>>>

When a value is exactly halfway between two choices, the behavior of round is to round
to the nearest even digit. That is, values such as 1.5 or 2.5 both get rounded to 2.

The number of digits given to round() can be negative, in which case rounding takes
place for tens, hundreds, thousands, and so on. For example:

>>> a = 1627731
>>> round(a, -1)
1627730

83

>>> round(a, -2)
1627700
>>> round(a, -3)
1628000

>>>

Discussion

Don’t confuse rounding with formatting a value for output. If your goal is simply to
output a numerical value with a certain number of decimal places, you don't typically

need to use round(). Instead, just specify the desired precision when formatting. For
example:

>>> x = 1.23456

>>> format(x, '0.2f')

'1.23'

>>> format(x, '0.3f')

'1.235'

>>> 'value is {:0.3f}'.format(x)
'value is 1.235'

>>>

Also, resist the urge to round floating-point numbers to “fix” perceived accuracy prob-
lems. For example, you might be inclined to do this:

>>> a3 = 2.1

>>> b = 4.2

>>>c=a+b

>5> C

6.300000000000001

>>> ¢ = round(c, 2) # "Fix" result (?2?)
>5> C

6.3

>>>

For most applications involving floating point, it's simply not necessary (or recom-
mended) to do this. Although there are small errors introduced into calculations, the
behavior of those errors are understood and tolerated. If avoiding such errors is im-
portant (e.g., in financial applications, perhaps), consider the use of the decimal module,
which is discussed in the next recipe.

3.2. Performing Accurate Decimal Calculations

Problem

You need to perform accurate calculations with decimal numbers, and don’t want the
small errors that naturally occur with floats.

84 | Chapter3: Numbers, Dates, and Times

Solution

A well-known issue with floating-point numbers is that they can’t accurately represent
all base-10 decimals. Moreover, even simple mathematical calculations introduce small
errors. For example:

>>> a = 4.2

>>> b = 2.1

>>> a + b
6.300000000000001
>>> (a + b) == 6.3
False

>>>

These errors are a “feature” of the underlying CPU and the IEEE 754 arithmetic per-
formed by its floating-point unit. Since Python’s float data type stores data using the
native representation, there’s nothing you can do to avoid such errors if you write your
code using float instances.

If you want more accuracy (and are willing to give up some performance), you can use
the decimal module:

>>> from decimal import Decimal
>>> a = Decimal('4.2")

>>> b = Decimal('2.1"')

>>> a + b

Decimal('6.3"')

>>> print(a + b)

6.3

>>> (a + b) == Decimal('6.3")
True

>>>

At first glance, it might look a little weird (i.e., specifying numbers as strings). However,
Decimal objects work in every way that you would expect them to (supporting all of the
usual math operations, etc.). If you print them or use them in string formatting func-
tions, they look like normal numbers.

A major feature of decimal is that it allows you to control different aspects of calcula-
tions, including number of digits and rounding. To do this, you create a local context
and change its settings. For example:

>>> from decimal import localcontext
>>> a = Decimal('1.3")
>>> b = Decimal('1.7")
>>> print(a / b)
0.7647058823529411764705882353
>>> with localcontext() as ctx:
ctx.prec = 3
print(a / b)

3.2. Performing Accurate Decimal Calculations | 85

0.765

>>> with localcontext() as ctx:
ctx.prec = 50
print(a / b)

0.76470588235294117647058823529411764705882352941176

>>>

Discussion

>«

The decimal module implements IBM’s “General Decimal Arithmetic Specification.”
Needless to say, there are a huge number of configuration options that are beyond the
scope of this book.

Newcomers to Python might be inclined to use the decimal module to work around
perceived accuracy problems with the float data type. However, it’s really important
to understand your application domain. If youre working with science or engineering
problems, computer graphics, or most things of a scientific nature, it’s simply more
common to use the normal floating-point type. For one, very few things in the real world
are measured to the 17 digits of accuracy that floats provide. Thus, tiny errors introduced
in calculations just don’t matter. Second, the performance of native floats is significantly
faster—something that’s important if you're performing a large number of calculations.

That said, you can’t ignore the errors completely. Mathematicians have spent a lot of
time studying various algorithms, and some handle errors better than others. You also
have to be a little careful with effects due to things such as subtractive cancellation and
adding large and small numbers together. For example:

>>> nums = [1.23e+18, 1, -1.23e+18]
>>> sum(nums) # Notice how 1 disappears
0.0

>>>

This latter example can be addressed by using a more accurate implementation in
math.fsum():

>>> import math
>>> math.fsum(nums)
1.0

>>>

However, for other algorithms, you really need to study the algorithm and understand
its error propagation properties.

All of this said, the main use of the decimal module is in programs involving things
such as finance. In such programs, it is extremely annoying to have small errors creep
into the calculation. Thus, decimal provides a way to avoid that. It is also common to
encounter Decimal objects when Python interfaces with databases—again, especially
when accessing financial data.

86 | Chapter3: Numbers, Dates, and Times

3.3. Formatting Numbers for Qutput

Problem

You need to format a number for output, controlling the number of digits, alignment,
inclusion of a thousands separator, and other details.

Solution

To format a single number for output, use the built-in format() function. For example:

>>> x = 1234.56789

>>> # Two decimal places of accuracy
>>> format(x, '0.2f")
'1234.57'

>>> # Right justified in 10 chars, one-digit accuracy
>>> format(x, '>10.1f')
! 1234.6'

>>> # Left justified
>>> format(x, '<10.1f')
'1234.6 !

>>> # Centered
>>> format(x, '~10.1f')
' 1234.6 '

>>> # Inclusion of thousands separator
>>> format(x, ',')

'1,234.56789'

>>> format(x, '0,.1f")

'1,234.6'

>>>
If you want to use exponential notation, change the f to an e or E, depending on the
case you want used for the exponential specifier. For example:

>>> format(x, 'e')

'1.234568e+03"'

>>> format(x, '0.2E')

'1.23E+03"'

>>>

The general form of the width and precision in both cases is ' [<>*]?width[,]?(.d1ig
its)?' where width and digits are integers and ? signifies optional parts. The same
format codes are also used in the . format() method of strings. For example:

3.3. Formatting Numbers for Output | 87

>>> 'The value is {:0,.2f}'.format(x)
'The value is 1,234.57'
>>>

Discussion

Formatting numbers for output is usually straightforward. The technique shown works
for both floating-point numbers and Decimal numbers in the decimal module.

When the number of digits is restricted, values are rounded away according to the same
rules of the round() function. For example:

>>> X

1234.56789

>>> format(x, '0.1f")
'1234.6'

>>> format(-x, '0.1f')
'-1234.6'

>>>

Formatting of values with a thousands separator is not locale aware. If you need to take
that into account, you might investigate functions in the locale module. You can also
swap separator characters using the translate() method of strings. For example:

>>> swap_separators = { ord('."'):",", ord(',"):"." }
>>> format(x, ',').translate(swap_separators)
'1.234,56789'

>>>

In a lot of Python code, numbers are formatted using the % operator. For example:

>>> '%0.2f" % x
'1234.57'

>>> '%10.1f" % x
! 1234.6'

>>> '%-10.1f" % x
'1234.6 !

>>>

This formatting is still acceptable, but less powerful than the more modern format()
method. For example, some features (e.g., adding thousands separators) aren’t sup-
ported when using the % operator to format numbers.

88 | Chapter3: Numbers, Dates, and Times

3.4. Working with Binary, Octal, and Hexadecimal
Integers

Problem

You need to convert or output integers represented by binary, octal, or hexadecimal
digits.

Solution

To convert an integer into a binary, octal, or hexadecimal text string, use the bin(),
oct(), or hex() functions, respectively:

>>> X = 1234
>>> bin(x)
'0b160011010010"
>>> oct(x)
'002322"

>>> hex(x)
'Ox4d2’

>>>

Alternatively, you can use the format() function if you don't want the @b, 0o, or 0x
prefixes to appear. For example:

>>> format(x, 'b')

'10011010010'

>>> format(x, 'o')
'2322'

>>> format(x, 'x')
'4d2"

>>>

Integers are signed, so if you are working with negative numbers, the output will also
include a sign. For example:

>>> X = -1234

>>> format(x, 'b')
'-10011010010"

>>> format(x, 'x')
'-4d2'

>>>

If you need to produce an unsigned value instead, you’ll need to add in the maximum
value to set the bit length. For example, to show a 32-bit value, use the following:

>>> X = -1234

>>> format(2**32 + x, 'b')
'111111111111111111111601100101110"
>>> format(2**32 + x, 'x')

3.4. Working with Binary, Octal, and Hexadecimal Integers | 89

'FFFffb2e’

>>>

To convert integer strings in different bases, simply use the int() function with an
appropriate base. For example:

>>> int('4d2', 16)

1234

>>> int('10011010010", 2)

1234

>>>

Discussion

For the most part, working with binary, octal, and hexadecimal integers is straightfor-
ward. Just remember that these conversions only pertain to the conversion of integers
to and from a textual representation. Under the covers, there’s just one integer type.

Finally, there is one caution for programmers who use octal. The Python syntax for
specifying octal values is slightly different than many other languages. For example, if
you try something like this, you’ll get a syntax error:

>>> import os
>>> os.chmod('script.py', 0755)
File "<stdin>", line 1
os.chmod('script.py', 0755)

A

SyntaxError: invalid token
>>>

Make sure you prefix the octal value with 0o, as shown here:

>>> 0s.chmod('script.py', 00755)
>>>

3.5. Packing and Unpacking Large Integers from Bytes

Problem

You have a byte string and you need to unpack it into an integer value. Alternatively,
you need to convert a large integer back into a byte string.

Solution

Suppose your program needs to work with a 16-element byte string that holds a 128-
bit integer value. For example:

data = b'\x00\x124V\x00x\x90\xab\x00\xcd\xef\x01\x00#\x004'

90 | Chapter3: Numbers, Dates, and Times

Tointerpret the bytesasaninteger, use int. from_bytes(),and specify the byte ordering
like this:

>>> len(data)

16

>>> int.from_bytes(data, 'little')
69120565665751139577663547927094891008
>>> int.from_bytes(data, 'big')
94522842520747284487117727783387188

>>>

To convert alarge integer value back into a byte string, use the int. to_bytes() method,
specifying the number of bytes and the byte order. For example:

>>> X = 94522842520747284487117727783387188

>>> x.to_bytes(16, 'big')
b'\x00\x124V\x00x\x90\xab\x00\xcd\xef\x01\x00#\x004 "'
>>> x.to_bytes(16, 'little')
b'4\x00#\x00\x01\xef\xcd\x00\xab\x90x\x00V4\x12\x00'

>>>

Discussion

Converting large integer values to and from byte strings is not a common operation.
However, it sometimes arises in certain application domains, such as cryptography or
networking. For instance, IPv6 network addresses are represented as 128-bit integers.
If you are writing code that needs to pull such values out of a data record, you might
face this problem.

As an alternative to this recipe, you might be inclined to unpack values using the struct
module, as described in Recipe 6.11. This works, but the size of integers that can be
unpacked with struct is limited. Thus, you would need to unpack multiple values and
combine them to create the final value. For example:

>>> data
b'\x00\x124V\x00x\x90\xab\x00\xcd\xef\x01\x00#\x004"
>>> import struct

>>> hi, lo = struct.unpack('>QQ', data)

>>> (hi << 64) + lo
94522842520747284487117727783387188

>>>

The specification of the byte order (1ittle or big) just indicates whether the bytes that
make up the integer value are listed from the least to most significant or the other way
around. This is easy to view using a carefully crafted hexadecimal value:

>>> X = 0x01020304

>>> Xx.to_bytes(4, 'big')
b'\x01\x02\x03\x04'

>>> X.to_bytes(4, 'little')

3.5. Packing and Unpacking Large Integers from Bytes | 91

b'\x04\x03\x02\x01"

>>>

If you try to pack an integer into a byte string, but it won't fit, you'll get an error. You
can use the int.bit_length() method to determine how many bits are required to
store a value if needed:

>>> x = 523 ** 23

>>> X
335381300113661875107536852714019056160355655333978849017944067
>>> x.to_bytes(16, 'little')

File "<stdin>", line 1, in <module>
OverflowError: int too big to convert
>>> x.bit_length()
208
>>> nbytes, rem = divmod(x.bit_length(), 8)
>>> if rem:
nbytes += 1

>>>
>>> Xx.to_bytes(nbytes, 'little')
b'\x03X\xf1\x821T\x96\xac\xc7c\x16\xf3\xb9\xcf...\xdo'

>>>

3.6. Performing Complex-Valued Math

Problem

Your code for interacting with the latest web authentication scheme has encountered a
singularity and your only solution is to go around it in the complex plane. Or maybe
you just need to perform some calculations using complex numbers.

Solution

Complex numbers can be specified using the complex(real, imag) function or by
floating-point numbers with a j suffix. For example:

>>> a = complex(2, 4)
>»>> b =3 - 5]

>>> a

(2+43)

>>> b

(3-53)

>>>
The real, imaginary, and conjugate values are easy to obtain, as shown here:

>>> a.real
2.0

92 | Chapter3: Numbers, Dates, and Times

>>> a.imag

4.0

>>> a.conjugate()
(2-43)

>>>
In addition, all of the usual mathematical operators work:

>>> a + b

(5-13)

>>> a3 * b

(26+23)

>>a /b
(-0.4117647058823529+0.64705882352941187)
>>> abs(a)

4.47213595499958

>>>

To perform additional complex-valued functions such as sines, cosines, or square roots,
use the cmath module:

>>> import cmath
>>> cmath.sin(a)
(24.83130584894638-11.3566127112181747)
>>> cmath.cos(a)
(-11.36423470640106-24.8146514856341877)
>>> cmath.exp(a)
(-4.829809383269385-5.59205609364098167)

>>>

Discussion

Most of Python’s math-related modules are aware of complex values. For example, if

you use numpy, it is straightforward to make arrays of complex values and perform
operations on them:

>>> import numpy as np

>>> a = np.array([2+37, 4+5j, 6-77, 8+97])

>>> a

array([2.+3.j, 4.+5.j, 6.-7.j, 8.+9.3j])

>>> a + 2

array([4.+3.j, 6.+5.j, 8.-7.j, 10.49.j])

>>> np.sin(a)

array([9.15449915 -4.168906967, -56.16227422 -48.502455247,
-153.20827755-526.47684926j, 4008.42651446-589.499483733])

>>>

Python’s standard mathematical functions do not produce complex values by default,
so it is unlikely that such a value would accidentally show up in your code. For example:

>>> import math
>>> math.sqrt(-1)

3.6. Performing Complex-Valued Math | 93

File "<stdin>", 1ine 1, in <module>
ValueError: math domain error
>>>

If you want complex numbers to be produced as a result, you have to explicitly use cmath
or declare the use of a complex type in libraries that know about them. For example:

>>> import cmath
>>> cmath.sqrt(-1)
1j

>>>

3.7. Working with Infinity and NaNs

Problem

You need to create or test for the floating-point values of infinity, negative infinity, or
NaN (not a number).

Solution

Python has no special syntax to represent these special floating-point values, but they
can be created using float(). For example:

>>> a = float('inf")
>>> b = float('-inf")
>>> ¢ = float('nan')
>>> a

inf

>>> b

-inf

>>> C

nan

>>>

To test for the presence of these values, use the math.isinf() and math.isnan() func-
tions. For example:

>>> math.isinf(a)
True
>>> math.isnan(c)
True
>>>

Discussion

For more detailed information about these special floating-point values, you should
refer to the IEEE 754 specification. However, there are a few tricky details to be aware
of, especially related to comparisons and operators.

94 | Chapter3: Numbers, Dates, and Times

Infinite values will propagate in calculations in a mathematical manner. For example:

>>> a = float('inf")
>>> a + 45

inf
>>> a * 10
inf
>>> 10 / a
0.0

>>>
However, certain operations are undefined and will result in a NaN result. For example:

>>> a = float('inf")
>>> a/a

nan
>>> b
>>> a
nan
>>>

float('-inf"')
b

+

NaN values propagate through all operations without raising an exception. For example:

>>> ¢ = float('nan')
>>> C + 23

nan

>>> ¢ [/ 2

nan

>>> C * 2

nan

>>> math.sqrt(c)

nan

>>>

A subtle feature of NaN values is that they never compare as equal. For example:

>>> ¢ = float('nan')
>>> d = float('nan')
>>> C ==

False

>>> c is d

False

>>>

Because of this, the only safe way to test for a NaN value is to use math.isnan(), as
shown in this recipe.

Sometimes programmers want to change Python’s behavior to raise exceptions when
operations result in an infinite or NaN result. The fpectl module can be used to adjust
this behavior, but it is not enabled in a standard Python build, it’s platform-dependent,
and really only intended for expert-level programmers. See the online Python docu-
mentation for further details.

3.7. Working with Infinity and NaNs | 95

http://docs.python.org/3/library/fpectl.html
http://docs.python.org/3/library/fpectl.html

3.8. Calculating with Fractions

Problem

You have entered a time machine and suddenly find yourself working on elementary-
level homework problems involving fractions. Or perhaps you're writing code to make
calculations involving measurements made in your wood shop.

Solution

The fractions module can be used to perform mathematical calculations involving
fractions. For example:

>>> from fractions import Fraction
>>> a = Fraction(5, 4)

>>> b = Fraction(7, 16)

>>> print(a + b)

27/16

>>> print(a * b)

35/64

>>> # Getting numerator/denominator
>>c=a*b

>>> c.numerator

35

>>> c.denominator

64

>>> # Converting to a float
>>> float(c)
0.546875

>>> # Limiting the denominator of a value
>>> print(c.limit_denominator(8))

4/7
>>> # Converting a float to a fraction
>>> X = 3.75

>>> y = Fraction(*x.as_integer_ratio())
>>>
Fraction(15, 4)
>>>

<

Discussion

Calculating with fractions doesn’t arise often in most programs, but there are situations
where it might make sense to use them. For example, allowing a program to accept units
of measurement in fractions and performing calculations with them in that form might
alleviate the need for a user to manually make conversions to decimals or floats.

96 | Chapter3: Numbers, Dates, and Times

3.9. Calculating with Large Numerical Arrays

Problem

You need to perform calculations on large numerical datasets, such as arrays or grids.

Solution

For any heavy computation involving arrays, use the NumPy library. The major feature
of NumPy is that it gives Python an array object that is much more efficient and better
suited for mathematical calculation than a standard Python list. Here is a short example
illustrating important behavioral differences between lists and NumPy arrays:

>>> # Python lists

>>> x = [1, 2, 3, 4]
>>>y =[5, 6, 7, 8]

>>> X ¥ 2

[1, 2, 3, 4, 1, 2, 3, 4]
>>> X + 10

File "<stdin>", line 1, in <module>
TypeError: can only concatenate list (not "int") to list
>>> X + Y
[1, 2, 3, 4, 5, 6, 7, 8]

>>> # Numpy arrays

>>> import numpy as np

>>> ax = np.array([1, 2, 3, 4])
>>> ay = np.array([5, 6, 7, 8])
>>> ax * 2

array([2, 4, 6, 8])

>>> ax + 10

array([11, 12, 13, 14])

>>> ax + ay

array([6, 8, 10, 12])

>>> ax * ay

array([5, 12, 21, 32])

>>>
As you can see, basic mathematical operations involving arrays behave differently.
Specifically, scalar operations (e.g., ax * 2 or ax + 10) apply the operation on an

element-by-element basis. In addition, performing math operations when both
operands are arrays applies the operation to all elements and produces a new array.

The fact that math operations apply to all of the elements simultaneously makes it very
easy and fast to compute functions across an entire array. For example, if you want to
compute the value of a polynomial:

>>> def f(x):
return 3*x**2 - 2*x + 7

3.9. Calculating with Large Numerical Arrays | 97

http://www.numpy.org

>>> f(ax)

array([8, 15, 28, 47])

>>>
NumPy provides a collection of “universal functions” that also allow for array opera-
tions. These are replacements for similar functions normally found in the math module.
For example:

>>> np.sqrt(ax)
array([1. , 1.41421356, 1.73205081, 2. D
>>> np.cos(ax)
array([0.54030231, -0.41614684, -0.9899925 , -0.65364362])

>>>
Using universal functions can be hundreds of times faster than looping over the array

elements one at a time and performing calculations using functions in the math module.
Thus, you should prefer their use whenever possible.

Under the covers, NumPy arrays are allocated in the same manner as in C or Fortran.
Namely, they are large, contiguous memory regions consisting of a homogenous data
type. Because of this, it’s possible to make arrays much larger than anything you would
normally put into a Python list. For example, if you want to make a two-dimensional
grid of 10,000 by 10,000 floats, it’s not an issue:

>>> grid = np.zeros(shape=(10000,10000), dtype=float)

>>> grid

array([[0., 0., 0., ..., 0., 0., 0.],
[6., 6., 0., ..., 0., 0., 0.],
[0., 0., 0., ..., 0., 0., 0.1,
[0., 0., 0., , 0., 0., 0.],
[6., 0., 0., , 0., 0., 0.],
[0., 0., 0., , 0., 0., 0.]1D

All of the usual operations still apply to all of the elements simultaneously:

>>> grid += 10
>>> grid
array([[10., 10., 10., ..., 10., 10., 10.],
[10., 10., 10., ..., 10., 10., 10.],
[16., 10., 10., ..., 10., 10., 10.],
[16., 10., 10., ..., 10., 10., 10.],
[10., 10., 10., ..., 10., 10., 10.],
[16., 10., 10., ..., 10., 10., 10.]1])
>>> np.sin(grid)
array([[-0.54402111, -0.54402111, -0.54402111, ..., -0.54402111,
-0.54402111, -0.54402111],
[-0.54402111, -0.54402111, -0.54402111, ..., -0.54402111,
-0.54402111, -0.54402111],

98 | Chapter3: Numbers, Dates, and Times

[-0.54402111, -0.54402111, -0.54402111, ..., -0.54402111,
-0.54402111, -0.544021111],

[-0.54402111, -0.54402111, -0.54402111, ..., -0.54402111,
-0.54402111, -0.54402111],

[-0.54402111, -0.54402111, -0.54402111, ..., -0.54402111,
-0.54402111, -0.54402111],

[-0.54402111, -0.54402111, -0.54402111, ..., -0.54402111,
-0.54402111, -0.54402111]])

>>>

One extremely notable aspect of NumPy is the manner in which it extends Python’s list
indexing functionality—especially with multidimensional arrays. To illustrate, make a
simple two-dimensional array and try some experiments:

>>> a = np.array([[1, 2, 3, 41, [5, 6, 7, 8], [9, 10, 11, 12]1])
>>> a
array([[1, 2, 3, 4],

[5, 6, 7, 8],

[9, 10, 11, 12]1])

>>> # Select row 1
>>> af1]
array([5, 6, 7, 8])

>>> # Select column 1
>>> af:,1]
array([2, 6, 10])

>>> # Select a subregion and change it
>>> a[1:3, 1:3]
array([[6, 71,
[10, 11]])
>>> af[1:3, 1:3] += 10
>>> a
array([[1, 2, 3, 4],
[5, 16, 17, 8],
[9, 20, 21, 12]1])

>>> # Broadcast a row vector across an operation on all rows
>>> a + [100, 101, 102, 103]
array([[101, 103, 105, 107],
[105, 117, 119, 111],
[109, 121, 123, 115]])
>>> a
array([[1, 2, 3, 4],
[5, 16, 17, 8],
[9, 20, 21, 12]1])

>>> # Conditional assignment on an array
>>> np.where(a < 10, a, 10)
array([[1! 2’ 3J 4]’

3.9. Calculating with Large Numerical Arrays | 99

[5, 10, 10, 8],
[9, 10, 10, 10]])

>>>

Discussion

NumPy is the foundation for a huge number of science and engineering libraries in
Python. It is also one of the largest and most complicated modules in widespread use.
That said, it’s still possible to accomplish useful things with NumPy by starting with
simple examples and playing around.

One note about usage is that it is relatively common to use the statement import numpy
as np,as shown in the solution. This simply shortens the name to something that’s more
convenient to type over and over again in your program.

For more information, you definitely need to visit http://www.numpy.org.

3.10. Performing Matrix and Linear Algebra Calculations

Problem

Youneed to perform matrix and linear algebra operations, such as matrix multiplication,
finding determinants, solving linear equations, and so on.

Solution

The NumPy library has a matrix object that can be used for this purpose. Matrices are
somewhat similar to the array objects described in Recipe 3.9, but follow linear algebra
rules for computation. Here is an example that illustrates a few essential features:

>>> import numpy as np
>>> m = np.matrix([[1,-2,3],[9,4,5],[7,8,-911)

>>> M

matrix([[1, -2, 3],
[o, 4, 5],
[7, 8, -91D

>>> # Return transpose

>>> m. T

matrix([[1, ©, 7],
[-2, 4, 8],
[3, 5, -91D

>>> # Return inverse

>>> m. I

matrix([[0.33043478, -0.02608696, 0.09565217],
[-0.15217391, 0.13043478, 0.02173913],
[0.12173913, 0.09565217, -0.0173913 1])

100 | Chapter3: Numbers, Dates, and Times

http://www.numpy.org
http://www.numpy.org

>>> # Create a vector and multiply
>>> v = np.matrix([[2],[3],[4]1])

>>> V
matrix([[2],
[31,
[41D
>>>m * v
matrix([[8],
[32],
[21D

>>>
More operations can be found in the numpy . linalg subpackage. For example:

>>> import numpy.linalg

>>> # Determinant
>>> numpy.linalg.det(m)
-229.99999999999983

>>> # Eigenvalues
>>> numpy.linalg.eigvals(m)
array([-13.11474312, 2.75956154, 6.35518158])

>>> # Solve for x in mx = v
>>> x = numpy.linalg.solve(m, v)
>>> X
matrix([[0.96521739],
[0.17391304],
[©.460869571])
>>> m * X
matrix([[2.],
[3.1,
[4.1D
>>> V
matrix([[2],
[31,
[41D

>>>

Discussion

Linear algebra is obviously a huge topic that’s far beyond the scope of this cookbook.
However, if you need to manipulate matrices and vectors, NumPy is a good starting
point. Visit http://www.numpy.org for more detailed information.

3.10. Performing Matrix and Linear Algebra Calculations | 101

http://www.numpy.org

3.11. Picking Things at Random

Problem

You want to pick random items out of a sequence or generate random numbers.

Solution

The random module has various functions for random numbers and picking random
items. For example, to pick a random item out of a sequence, use random.chotice():

>>> import random

>>> values = [1, 2, 3, 4, 5, 6]
>>> random.choice(values)

2

>>> random.choice(values)

>>> random.choice(values)
>>> random.choice(values)

>>> random.choice(values)
6

>>>

To take a sampling of N items where selected items are removed from further consid-
eration, use random.sample() instead:

>>> random.sample(values, 2)
[6, 2]

>>> random.sample(values, 2)
[4, 3]

>>> random.sample(values, 3)
[4, 3, 1]

>>> random.sample(values, 3)
[5, 4, 1]

>>>
If you simply want to shuffle items in a sequence in place, use random.shuffle():

>>> random.shuffle(values)
>>> values

[2, 4, 6, 5, 3, 1]

>>> random.shuffle(values)
>>> values

[3, 5, 2, 1, 6, 4]

>>>
To produce random integers, use random. randint():

>>> random.randint(0,10)
2

102 | Chapter3: Numbers, Dates, and Times

>>> random.randint(0,10)
>>> random.randint(0,10)

>>> random.randint(0,10)
7
>>> random.randint(0,10)
10
>>> random.randint(0,10)
3

>>>
To produce uniform floating-point values in the range 0 to 1, use random. random():

>>> random.random()
0.9406677561675867
>>> random.random()
0.133129581343897

>>> random.random()
0.4144991136919316

>>>
To get N random-bits expressed as an integer, use random.getrandbits():

>>> random.getrandbits(200)
335837000776573622800628485064121869519521710558559406913275

>>>

Discussion

The random module computes random numbers using the Mersenne Twister algorithm.
This is a deterministic algorithm, but you can alter the initial seed by using the
random. seed() function. For example:

random.seed() # Seed based on system time or os.urandom()

random.seed(12345) # Seed based on integer given

random.seed(b'bytedata') # Seed based on byte data
In addition to the functionality shown, random() includes functions for uniform, Gaus-
sian, and other probabality distributions. For example, random.uniform() computes
uniformly distributed numbers, and random.gauss() computes normally distributed
numbers. Consult the documentation for information on other supported distributions.

Functions in random() should not be used in programs related to cryptography. If you
need such functionality, consider using functions in the ss1 module instead. For ex-
ample, ss1.RAND_bytes() can be used to generate a cryptographically secure sequence
of random bytes.

3.11. Picking Things at Random | 103

3.12. Converting Days to Seconds, and Other Basic Time
Conversions

Problem

You have code that needs to perform simple time conversions, like days to seconds,
hours to minutes, and so on.

Solution

To perform conversions and arithmetic involving different units of time, use the date

time module. For example, to represent an interval of time, create a timedeltainstance,
like this:

>>> from datetime import timedelta
>>> a = timedelta(days=2, hours=6)
= timedelta(hours=4.5)

=a+b
.days

>>> c.seconds
>>> c.seconds / 3600

>>> c.total_seconds() / 3600

If you need to represent specific dates and times, create datetime instances and use the
standard mathematical operations to manipulate them. For example:

>>> from datetime import datetime
>>> a = datetime(2012, 9, 23)

>>> print(a + timedelta(days=10))
2012-10-03 00:00:00

>>>

>>>

datetime(2012, 12, 21)
b - a
ays

>>>

a o o
a

>>>
89
>>> now = datetime.today()

>>> print(now)

2012-12-21 14:54:43.094063

>>> print(now + timedelta(minutes=10))
2012-12-21 15:04:43.094063

>>>

When making calculations, it should be noted that datetime is aware of leap years. For
example:

104 | Chapter3: Numbers, Dates, and Times

>>> a = datetime(2012, 3, 1)
>>> b = datetime(2012, 2, 28)
>>> a3 - b
datetime.timedelta(2)

>>> (a - b).days

2

>>> C
>>> d

datetime(2013, 3, 1)
datetime(2013, 2, 28)
>>> (c - d).days

1

>>>

Discussion

For most basic date and time manipulation problems, the datetime module will suffice.
If you need to perform more complex date manipulations, such as dealing with time
zones, fuzzy time ranges, calculating the dates of holidays, and so forth, look at the
dateutil module.

To illustrate, many similar time calculations can be performed with the dateutil.rel
ativedelta() function. However, one notable feature is that it fills in some gaps per-
taining to the handling of months (and their differing number of days). For instance:

>>> a = datetime(2012, 9, 23)
>>> a + timedelta(months=1)

File "<stdin>", line 1, in <module>
TypeError: 'months' is an invalid keyword argument for this function
>>>

>>> from dateutil.relativedelta import relativedelta
>>> a + relativedelta(months=+1)
datetime.datetime(2012, 10, 23, 0, 0)

>>> a + relativedelta(months=+4)
datetime.datetime(2013, 1, 23, 0, 0)

>>>

>>> # Time between two dates
>>> b = datetime(2012, 12, 21)
>>>d=b - a

>>> d

datetime.timedelta(89)

>>> d = relativedelta(b, a)

>>> d

relativedelta(months=+2, days=+28)
>>> d.months

2

>>> d.days

28

>>>

3.12. Converting Days to Seconds, and Other Basic Time Conversions | 105

http://pypi.python.org/pypi/python-dateutil

3.13. Determining Last Friday’s Date

Problem

You want a general solution for finding a date for the last occurrence of a day of the
week. Last Friday, for example.

Solution

Python’s datetime module has utility functions and classes to help perform calculations
like this. A decent, generic solution to this problem looks like this:

from datetime import datetime, timedelta

weekdays = ['Monday', 'Tuesday', 'Wednesday', 'Thursday',
'"Friday', 'Saturday', 'Sunday']

def get_previous_byday(dayname, start_date=None):
if start_date is None:
start_date = datetime.today()
day_num = start_date.weekday()
day_num_target = weekdays.index(dayname)
days_ago = (7 + day_num - day_num_target) % 7
if days_ago == 0:
days_ago = 7
target_date = start_date - timedelta(days=days_ago)
return target_date

Using this in an interpreter session would look like this:

>>> datetime.today() # For reference
datetime.datetime(2012, 8, 28, 22, 4, 30, 263076)

>>> get_previous_byday('Monday"')

datetime.datetime(2012, 8, 27, 22, 3, 57, 29045)

>>> get_previous_byday('Tuesday') # Previous week, not today
datetime.datetime(2012, 8, 21, 22, 4, 12, 629771)

>>> get_previous_byday('Friday"')

datetime.datetime(2012, 8, 24, 22, 5, 9, 911393)

>>>

The optional start_date can be supplied using another datetime instance. For
example:
>>> get_previous_byday('Sunday', datetime(2012, 12, 21))

datetime.datetime(2012, 12, 16, 0, 0)
>>>

106 | Chapter3: Numbers, Dates, and Times

Discussion

This recipe works by mapping the start date and the target date to their numeric position
in the week (with Monday as day 0). Modular arithmetic is then used to figure out how
many days ago the target date last occurred. From there, the desired date is calculated
from the start date by subtracting an appropriate timedelta instance.

If you're performing a lot of date calculations like this, you may be better off installing
the python-dateutil package instead. For example, here is an example of performing
the same calculation using the relativedelta() function from dateutil:

>>> from datetime import datetime

>>> from dateutil.relativedelta import relativedelta
>>> from dateutil.rrule import *

>>> d = datetime.now()

>>> print(d)

2012-12-23 16:31:52.718111

>>> # Next Friday
>>> print(d + relativedelta(weekday=FR))
2012-12-28 16:31:52.718111

>>>

>>> # Last Friday
>>> print(d + relativedelta(weekday=FR(-1)))
2012-12-21 16:31:52.718111

>>>

3.14. Finding the Date Range for the Current Month

Problem

You have some code that needs to loop over each date in the current month, and want
an efficient way to calculate that date range.

Solution

Looping over the dates doesn’t require building a list of all the dates ahead of time. You
can just calculate the starting and stopping date in the range, then use datetime.time
delta objects to increment the date as you go.

Here’s a function that takes any datetime object, and returns a tuple containing the first
date of the month and the starting date of the next month:

from datetime import datetime, date, timedelta
import calendar

def get_month_range(start_date=None):
if start_date is None:

3.14. Finding the Date Range for the Current Month | 107

http://pypi.python.org/pypi/python-dateutil

start_date = date.today().replace(day=1)
_, days_in_month = calendar.monthrange(start_date.year, start_date.month)
end_date = start_date + timedelta(days=days_in_month)
return (start_date, end_date)

With this in place, it’s pretty simple to loop over the date range:

>>> a_day = timedelta(days=1)

>>> first_day, last_day = get_month_range()

>>> while first_day < last_day:
print(first_day)
first_day += a_day

2012-08-01

2012-08-02

2012-08-03

2012-08-04

2012-08-05

2012-08-06

2012-08-07

2012-08-08

2012-08-09

#... and so on...

Discussion

This recipe works by first calculating a date correponding to the first day of the month.
A quick way to do this is to use the replace() method of a date or datetime object to
simply set the days attribute to 1. One nice thing about the replace() method is that
it creates the same kind of object that you started with. Thus, if the input was a date
instance, the result is a date. Likewise, if the input was a datetime instance, you get a
datetime instance.

After that, the calendar.monthrange() function is used to find out how many days are
in the month in question. Any time you need to get basic information about calendars,
the calendar module can be useful. monthrange() is only one such function that returns
a tuple containing the day of the week along with the number of days in the month.

Once the number of days in the month is known, the ending date is calculated by adding
an appropriate timedelta to the starting date. It's subtle, but an important aspect of this
recipe is that the ending date is not to be included in the range (it is actually the first
day of the next month). This mirrors the behavior of Python’ slices and range opera-
tions, which also never include the end point.

To loop over the date range, standard math and comparison operators are used. For
example, timedelta instances can be used to increment the date. The < operator is used
to check whether a date comes before the ending date.

108 | Chapter3: Numbers, Dates, and Times

Ideally, it would be nice to create a function that works like the built-in range () function,
but for dates. Fortunately, this is extremely easy to implement using a generator:

def date_range(start, stop, step):
while start < stop:
yield start
start += step

Here is an example of it in use:

>>> for d in date_range(datetime(2012, 9, 1), datetime(2012,10,1),
timedelta(hours=6)):
print(d)

2012-09-01 00:00:00
2012-09-01 06:00:00
2012-09-01 12:00:00
2012-09-01 18:00:00
2012-09-02 00:00:00
2012-09-02 06:00:00

>>>

Again, a major part of the ease of implementation is that dates and times can be ma-
nipulated using standard math and comparison operators.

3.15. Converting Strings into Datetimes

Problem

Your application receives temporal data in string format, but you want to convert those
strings into datetime objects in order to perform nonstring operations on them.

Solution
Python’s standard datetime module is typically the easy solution for this. For example:

>>> from datetime import datetime

>>> text = '2012-09-20'

>>> y = datetime.strptime(text, '%Y-%m-%d')
>>> z = datetime.now()

>>> diff =z -y

>>> diff

datetime.timedelta(3, 77824, 177393)

>>>

Discussion

The datetime.strptime() method supports a host of formatting codes, like %Y for the
four-digit year and %m for the two-digit month. It’s also worth noting that these format-

3.15. Converting Strings into Datetimes | 109

ting placeholders also work in reverse, in case you need to represent a datetime object
in string output and make it look nice.

For example, let’s say you have some code that generates a datetime object, but you need
to format a nice, human-readable date to put in the header of an auto-generated letter
or report:

>>> Z

datetime.datetime(2012, 9, 23, 21, 37, 4, 177393)
>>> nice_z = datetime.strftime(z, '%A %B %d, %Y')
>>> nice_z

'Sunday September 23, 2012'

>>>

It's worth noting that the performance of strptime() is often much worse than you
might expect, due to the fact that it’s written in pure Python and it has to deal with all
sorts of system locale settings. If you are parsing a lot of dates in your code and you
know the precise format, you will probably get much better performance by cooking
up a custom solution instead. For example, if you knew that the dates were of the form
“YYYY-MM-DD,” you could write a function like this:

from datetime import datetime
def parse_ymd(s):
year_s, mon_s, day_s = s.split('-")
return datetime(int(year_s), int(mon_s), int(day_s))
When tested, this function runs over seven times faster than datetime.strptime().
This is probably something to consider if youre processing large amounts of data in-
volving dates.

3.16. Manipulating Dates Involving Time Zones

Problem

You had a conference call scheduled for December 21, 2012, at 9:30 a.m. in Chicago. At
what local time did your friend in Bangalore, India, have to show up to attend?

Solution

For almost any problem involving time zones, you should use the pytz module. This
package provides the Olson time zone database, which is the de facto standard for time
zone information found in many languages and operating systems.

A major use of pytz is in localizing simple dates created with the datetime library. For
example, here is how you would represent a date in Chicago time:

>>> from datetime import datetime
>>> from pytz import timezone

110 | Chapter3: Numbers, Dates, and Times

http://pypi.python.org/pypi/pytz

>>> d = datetime(2012, 12, 21, 9, 30, 0)
>>> print(d)
2012-12-21 09:30:00

>>>

>>> # Localize the date for Chicago
>>> central = timezone('US/Central')
>>> loc_d = central.localize(d)

>>> print(loc_d)

2012-12-21 09:30:00-06:00

>>>

Once the date has been localized, it can be converted to other time zones. To find the
same time in Bangalore, you would do this:

>>> # Convert to Bangalore time

>>> bang_d = loc_d.astimezone(timezone('Asia/Kolkata'))
>>> print(bang_d)

2012-12-21 21:00:00+05:30

>>>

If you are going to perform arithmetic with localized dates, you need to be particularly
aware of daylight saving transitions and other details. For example, in 2013, U.S. stan-
dard daylight saving time started on March 13, 2:00 a.m. local time (at which point, time
skipped ahead one hour). If you're performing naive arithmetic, you’ll get it wrong. For
example:

>>> d = datetime(2013, 3, 10, 1, 45)

>>> loc_d = central.localize(d)

>>> print(loc_d)

2013-03-10 01:45:00-06:00

>>> later = loc_d + timedelta(minutes=30)

>>> print(later)

2013-03-10 02:15:00-06:00 # WRONG! WRONG!

>>>

The answer is wrong because it doesn’t account for the one-hour skip in the local time.
To fix this, use the normalize() method of the time zone. For example:

>>> from datetime import timedelta

>>> later = central.normalize(loc_d + timedelta(minutes=30))
>>> print(later)

2013-03-10 03:15:00-05:00

>>>

Discussion

To keep your head from completely exploding, a common strategy for localized date
handling is to convert all dates to UTC time and to use that for all internal storage and
manipulation. For example:

3.16. Manipulating Dates Involving Time Zones | 111

>>> print(loc_d)

2013-03-10 01:45:00-06:00

>>> utc_d = loc_d.astimezone(pytz.utc)
>>> print(utc_d)

2013-03-10 07:45:00+00:00

>>>

Once in UTC, you don't have to worry about issues related to daylight saving time and
other matters. Thus, you can simply perform normal date arithmetic as before. Should
you want to output the date in localized time, just convert it to the appropriate time
zone afterward. For example:

>>> later_utc = utc_d + timedelta(minutes=30)
>>> print(later_utc.astimezone(central))
2013-03-10 03:15:00-05:00

>>>
One issue in working with time zones is simply figuring out what time zone names to
use. For example, in this recipe, how was it known that “Asia/Kolkata” was the correct

time zone name for India? To find out, you can consult the pytz.country_timezones
dictionary using the ISO 3166 country code as a key. For example:

>>> pytz.country_timezones['IN']
['Asia/Kolkata']

>>>

=5 By the time you read this, it’s possible that the pytz module will be
t‘s‘.‘ deprecated in favor of improved time zone support, as described in PEP
"4k 431, Many of the same issues will still apply, however (e.g., advice using

UTC dates, etc.).

112 | Chapter3: Numbers, Dates, and Times

http://www.python.org/dev/peps/pep-0431
http://www.python.org/dev/peps/pep-0431

CHAPTER 4
Iterators and Generators

Iteration is one of Python’s strongest features. At a high level, you might simply view
iteration as a way to process items in a sequence. However, there is so much more that
is possible, such as creating your own iterator objects, applying useful iteration patterns
in the itertools module, making generator functions, and so forth. This chapter aims
to address common problems involving iteration.

4.1. Manually Consuming an Iterator

Problem

You need to process items in an iterable, but for whatever reason, you can’t or don’t want
to use a for loop.

Solution

To manually consume an iterable, use the next() function and write your code to catch

the StopIteration exception. For example, this example manually reads lines from a
file

with open('/etc/passwd') as f:
try:
while True:
line = next(f)
print(line, end="")
except StopIteration:
pass

Normally, StopIteration isused to signal the end of iteration. However, if you're using
next() manually (as shown), you can also instruct it to return a terminating value, such
as None, instead. For example:

113

with open('/etc/passwd') as f:
while True:
line = next(f, None)
if line is None:
break
print(line, end='")

Discussion

In most cases, the for statement is used to consume an iterable. However, every now
and then, a problem calls for more precise control over the underlying iteration mech-
anism. Thus, it is useful to know what actually happens.

The following interactive example illustrates the basic mechanics of what happens dur-
ing iteration:

>>> items = [1, 2, 3]

>>> # Get the iterator

>>> 1t = iter(items) # Invokes items.__iter__()

>>> # Run the iterator

>>> next(it) # Invokes it.__next__()

1

>>> next(it)

2

>>> next(it)

3

>>> next(it)

File "<stdin>", line 1, in <module>
StopIteration
>>>

Subsequent recipes in this chapter expand on iteration techniques, and knowledge of
the basic iterator protocol is assumed. Be sure to tuck this first recipe away in your
memory.

4.2. Delegating Iteration

Problem

You have built a custom container object that internally holds a list, tuple, or some other
iterable. You would like to make iteration work with your new container.

Solution

Typically, all you need to do is define an __1iter__() method that delegates iteration to
the internally held container. For example:

114 | Chapter 4: Iterators and Generators

class Node:
def __init__ (self, value):
self._value = value
self._children = []

def __repr__(self):
return 'Node({!r})'.format(self._value)

def add_child(self, node):
self._children.append(node)

def __iter_ (self):
return iter(self._children)

Example

if __pame__ == '__main__':
root = Node(0)
childl = Node(1)
child2 = Node(2)

root.add_child(childl)
root.add_child(child2)
for ch in root:
print(ch)
Outputs Node(1), Node(2)
In this code, the __iter__() method simply forwards the iteration request to the in-
ternally held _children attribute.

Discussion

Python’s iterator protocol requires __iter__() to return a special iterator object that
implements a __next__() method to carry out the actual iteration. If all you are doing
is iterating over the contents of another container, you don't really need to worry about
the underlying details of how it works. All you need to do is to forward the iteration
request along.

The use of the 1ter () function here is a bit of a shortcut that cleans up the code. iter(s)
simply returns the underlying iterator by calling s.__1iter__(), much in the same way
that len(s) invokess.__len__ ().

4.3. Creating New Iteration Patterns with Generators

Problem

You want to implement a custom iteration pattern that’s different than the usual built-
in functions (e.g., range(), reversed(), etc.).

4.3. Creating New Iteration Patterns with Generators | 115

Solution

If you want to implement a new kind of iteration pattern, define it using a generator
function. Here’s a generator that produces a range of floating-point numbers:

def frange(start, stop, increment):

X = start
while x < stop:
yield x

X += increment

To use such a function, you iterate over it using a for loop or use it with some other
function that consumes an iterable (e.g., sum(), list(), etc.). For example:

>>> for n in frange(0, 4, 0.5):

ee print(n)

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

>>> list(frange(0, 1, 0.125))

—
(=]
-

0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875]
>>>

Discussion

The mere presence of the yield statement in a function turns it into a generator. Unlike
a normal function, a generator only runs in response to iteration. Here’s an experiment
you can try to see the underlying mechanics of how such a function works:

>>> def countdown(n):

e print('Starting to count from', n)
. while n > 0:

. yield n

. n-=1

e print('Done!")

>>> # Create the generator, notice no output appears
>>> ¢ = countdown(3)

>>> C

<generator object countdown at 0x1006a0afo>

>>> # Run to first yield and emit a value
>>> next(c)

Starting to count from 3

3

116 | Chapter 4: Iterators and Generators

>>> # Run to the next yield
>>> next(c)

>>> # Run to next yield
>>> next(c)

>>> # Run to next yield (iteration stops)
>>> next(c)
Done!

File "<stdin>", line 1, in <module>
StopIteration
>>>

The key feature is that a generator function only runs in response to “next” operations
carried out in iteration. Once a generator function returns, iteration stops. However,

the for statement that’s usually used to iterate takes care of these details, so you don’t
normally need to worry about them.

4.4. Implementing the Iterator Protocol

Problem

You are building custom objects on which you would like to supportiteration, but would
like an easy way to implement the iterator protocol.

Solution

By far, the easiest way to implement iteration on an object is to use a generator function.
In Recipe 4.2, a Node class was presented for representing tree structures. Perhaps you
want to implement an iterator that traverses nodes in a depth-first pattern. Here is how
you could do it:

class Node:
def __init__(self, value):
self._value = value
self._children = []

def __repr__(self):
return 'Node({!r})"'.format(self._value)

def add_child(self, node):
self._children.append(node)

def __iter__(self):
return iter(self._children)

4.4. Implementing the Iterator Protocol | 117

def depth_first(self):
yield self
for ¢ in self:
yield from c.depth_first()

Example

if __pame__ == '__main__':
root = Node(0)
childl = Node(1)

child2 = Node(2)
root.add_child(childl)
root.add_child(child2)
child1.add_child(Node(3))
childl.add_child(Node(4))
child2.add_child(Node(5))

for ch in root.depth_first():
print(ch)
Outputs Node(0®), Node(1), Node(3), Node(4), Node(2), Node(5)
In this code, the depth_first() method is simple to read and describe. It first yields
itself and then iterates over each child yielding the items produced by the child’s
depth_first() method (using yield from).

Discussion

Python’s iterator protocol requires __iter__() to return a special iterator object that
implements a __next__() operation and uses a StopIteration exception to signal
completion. However, implementing such objects can often be a messy affair. For ex-
ample, the following code shows an alternative implementation of the depth_first()
method using an associated iterator class:

class Node:
def __init__ (self, value):
self._value = value
self._children = []

def __repr__(self):
return 'Node({!r})"'.format(self._value)

def add_child(self, other_node):
self._children.append(other_node)

def __iter_ (self):
return iter(self._children)

def depth_first(self):
return DepthFirstIterator(self)

class DepthFirstIterator(object):

118 | Chapter 4: Iterators and Generators

T

Depth-first traversal

T

def

def

def

Problem

You want to iterate in reverse over a sequence.

Solution
Use the built-in reversed() function. For example:

>>> a3 =
>>> for

__init__(self, start_node):
self._node = start_node
self._children_1iter = None
self._child_iter = None

__iter__(self):
return self

__next__(self):
Return myself i1f just started; create an iterator for children
if self._children_iter is None:

self._children_iter = iter(self._node)

return self._node

If processing a child, return its next item
elif self._child_iter:
try:
nextchild = next(self._child_1iter)
return nextchild
except StopIteration:
self._child_iter = None
return next(self)

Advance to the next child and start its iteration

else:
self._child_iter = next(self._children_iter).depth_first()
return next(self)

The DepthFirstIterator class works in the same way as the generator version, but it’s
a mess because the iterator has to maintain a lot of complex state about where it is in
the iteration process. Frankly, nobody likes to write mind-bending code like that. Define
your iterator as a generator and be done with it.

4.5. Iterating in Reverse

[13 2} 3} 4]
x in reversed(a):
print(x)

4.5. Iterating in Reverse | 119

BN WA

Reversed iteration only works if the object in question has a size that can be determined
or if the object implements a __reversed__() special method. If neither of these can
be satistied, you’ll have to convert the object into a list first. For example:

Print a file backwards

f = open('somefile')

for line in reversed(list(f)):
print(line, end="")

Be aware that turning an iterable into a list as shown could consume a lot of memory
ifit’s large.

Discussion

Many programmers don't realize that reversed iteration can be customized on user-
defined classes if they implement the __reversed__() method. For example:

class Countdown:
def __init__ (self, start):
self.start = start

Forward iterator
def __iter_ (self):
n = self.start
while n > 0:
yield n
n-=1

Reverse iterator
def __reversed__(self):

n=1

while n <= self.start:
yield n
n+=1

Defining a reversed iterator makes the code much more efficient, as it’s no longer nec-
essary to pull the data into a list and iterate in reverse on the list.

4.6. Defining Generator Functions with Extra State

Problem

You would like to define a generator function, but it involves extra state that you would
like to expose to the user somehow.

120 | Chapter 4: Iterators and Generators

Solution

If you want a generator to expose extra state to the user, don’t forget that you can easily
implement it as a class, putting the generator function code in the __iter__() method.
For example:

from collections import deque

class linehistory:
def __init__(self, lines, histlen=3):
self.lines = lines
self.history = deque(maxlen=histlen)

def __iter_ (self):
for lineno, line in enumerate(self.lines,1):
self.history.append((lineno, line))
yield line

def clear(self):
self.history.clear()

To use this class, you would treat it like a normal generator function. However, since it

creates an instance, you can access internal attributes, such as the history attribute or
the clear () method. For example:

with open('somefile.txt') as f:
lines = linehistory(f)
for line in lines:
if 'python' in line:
for lineno, hline in lines.history:
print('{}:{}'.format(lineno, hline), end="")

Discussion

With generators, it is easy to fall into a trap of trying to do everything with functions
alone. This can lead to rather complicated code if the generator function needs to in-
teract with other parts of your program in unusual ways (exposing attributes, allowing
control via method calls, etc.). If this is the case, just use a class definition, as shown.
Defining your generator in the __iter__() method doesn’t change anything about how
you write your algorithm. The fact that it’s part of a class makes it easy for you to provide
attributes and methods for users to interact with.

One potential subtlety with the method shown is that it might require an extra step of
calling iter() if you are going to drive iteration using a technique other than a for
loop. For example:

>>> f = open('somefile.txt')
>>> lines = linehistory(f)
>>> next(lines)

4.6. Defining Generator Functions with Extra State | 121

File "<stdin>", 1ine 1, in <module>
TypeError: 'linehistory' object is not an iterator

>>> # Call iter() first, then start iterating
>>> it = iter(lines)

>>> next(it)

'hello world\n'

>>> next(it)

'this is a test\n'

>>>

4.7. Taking a Slice of an Iterator

Problem

You want to take a slice of data produced by an iterator, but the normal slicing operator
doesn’t work.

Solution

The itertools.islice() function is perfectly suited for taking slices of iterators and
generators. For example:

>>> def count(n):
while True:
yield n
n+=1

>>> ¢ = count(0)
>>> ¢[10:20]
Traceback (most recent call last):
File "<stdin>", 1line 1, in <module>
TypeError: 'generator' object is not subscriptable

>>> # Now using islice()

>>> import itertools

>>> for x in itertools.islice(c, 10, 20):
print(x)

10

11

12

13

14

15

16

17

18

19

>>>

122 | Chapter 4: Iterators and Generators

Discussion

Iterators and generators can’t normally be sliced, because no information is known about
their length (and they don’t implement indexing). The result of islice() is an iterator
that produces the desired slice items, but it does this by consuming and discarding all
of the items up to the starting slice index. Further items are then produced by the islice
object until the ending index has been reached.

It’s important to emphasize that islice() will consume data on the supplied iterator.
Since iterators can’t be rewound, that is something to consider. If it's important to go
back, you should probably just turn the data into a list first.

4.8. Skipping the First Part of an Iterable

Problem

You want to iterate over items in an iterable, but the first few items aren’t of interest and
you just want to discard them.

Solution

The itertools module has a few functions that can be used to address this task. The
first is the itertools.dropwhile() function. To use it, you supply a function and an
iterable. The returned iterator discards the first items in the sequence as long as the
supplied function returns True. Afterward, the entirety of the sequence is produced.

To illustrate, suppose you are reading a file that starts with a series of comment lines.
For example:

>>> with open('/etc/passwd') as f:

for line in f:

print(line, end="")

#it
User Database
#
Note that this file is consulted directly only when the system is running
in single-user mode. At other times, this information is provided by
Open Directory.
#it
nobody:*:-2:-2:Unprivileged User:/var/empty:/usr/bin/false
root:*:0:0:System Administrator:/var/root:/bin/sh

>>>

If you want to skip all of the initial comment lines, here’s one way to do it:

4.8. Skipping the First Part of an Iterable | 123

>>> from itertools import dropwhile
>>> with open('/etc/passwd') as f:
for line in dropwhile(lambda line: line.startswith('#'), f):
print(line, end='")

nobody:*:-2:-2:Unprivileged User:/var/empty:/usr/bin/false
root:*:0:0:System Administrator:/var/root:/bin/sh

>>>

This example is based on skipping the first items according to a test function. If you
happen to know the exact number of items you want to skip, then you can use iter
tools.islice() instead. For example:

>>> from itertools import islice

>>> items = ['a', 'b', 'c', 1, 4, 10, 15]

>>> for x in islice(items, 3, None):
print(x)

10
15

>>>

In this example, the last None argument to islice() is required to indicate that you
want everything beyond the first three items as opposed to only the first three items
(e.g., aslice of [3:] as opposed to a slice of [:3]).

Discussion

The dropwhile() and islice() functions are mainly convenience functions that you
can use to avoid writing rather messy code such as this:

with open('/etc/passwd') as f:
Skip over initial comments
while True:
line = next(f, '")
if not line.startswith('#'):
break

Process remaining lines

while line:
Replace with useful processing
print(line, end="")
1ine = next(f, None)

Discarding the first part of an iterable is also slightly different than simply filtering all
of it. For example, the first part of this recipe might be rewritten as follows:

with open('/etc/passwd') as f:
lines = (line for line in f if not line.startswith('#'))

124 | Chapter 4: Iterators and Generators

for line in lines:
print(line, end="")
This will obviously discard the comment lines at the start, but will also discard all such
lines throughout the entire file. On the other hand, the solution only discards items
until an item no longer satisfies the supplied test. After that, all subsequent items are
returned with no filtering.

Last, but not least, it should be emphasized that this recipe works with all iterables,
including those whose size can’t be determined in advance. This includes generators,
files, and similar kinds of objects.

4.9. Iterating Over All Possible Combinations or
Permutations

Problem

You want to iterate over all of the possible combinations or permutations of a collection
of items.

Solution

The itertools module provides three functions for this task. The first of these—iter
tools.permutations()—takes a collection of items and produces a sequence of tuples
that rearranges all of the items into all possible permutations (i.e., it shuffles them into
all possible configurations). For example:

>>> {tems = ['a', 'b', 'c']

>>> from itertools import permutations

>>> for p in permutations(items):
print(p)

lbl’
Icl’
lal’
Icl’
3!
B
Ibl’

- - = - = e
NN ooou o -
e e e e

ANAANAAA A

>>>

If you want all permutations of a smaller length, you can give an optional length argu-
ment. For example:

>>> for p in permutations(items, 2):

print(p)
("a', 'bY)
(Ia|, lcl)

4.9. Iterating Over All Possible Combinations or Permutations | 125

~NA~N A~~~
-

oo N o

~

Use itertools.combinations() to produce a sequence of combinations of items taken
from the input. For example:

>>> from itertools import combinations
>>> for c in combinations(items, 3):
print(c)

(Ia|, lbl’ ICI)
>>> for c in combinations(items, 2):
print(c)

(‘a', 'b")

(a', 'c")

¢'b", 'c")

>>> for c in combinations(items, 1):
print(c)

a'
b [

('a',)
('b",)
('c'y)

>>>
For combinations(), the actual order of the elements is not considered. That is, the
combination ('a', 'b') is considered to be the same as ('b', 'a') (which is not
produced).

When producing combinations, chosen items are removed from the collection of pos-
sible candidates (i.e., if 'a' has already been chosen, then it is removed from consider-
ation). The itertools.combinations_with_replacement() function relaxes this, and
allows the same item to be chosen more than once. For example:

>>> for ¢ in combinations_with_replacement(items, 3):

print(c)
('a', 'a', 'a")
('a', 'a', 'b")
('a', 'a', 'c")
('a', 'b', 'b")
('a', 'b', 'c")
('a', 'c', 'c")
('b', 'b', 'b")
('b', 'b', 'c")
('b', 'c', 'c")
('c', 'c', 'c")

>>>

126 | Chapter 4: Iterators and Generators

Discussion

This recipe demonstrates only some of the power found in the itertools module.
Although you could certainly write code to produce permutations and combinations
yourself, doing so would probably require more than a fair bit of thought. When faced
with seemingly complicated iteration problems, it always pays tolook at itertools first.
If the problem is common, chances are a solution is already available.

4.10. Iterating Over the Index-Value Pairs of a Sequence

Problem

You want to iterate over a sequence, but would like to keep track of which element of
the sequence is currently being processed.

Solution
The built-in enumerate() function handles this quite nicely:
>>> my_list = ['a', 'b', 'c']

>>> for idx, val in enumerate(my_list):
print(idx, val)

N R O -
.
nNn oo

For printing output with canonical line numbers (where you typically start the num-
bering at 1 instead of 0), you can pass in a start argument:
>s>> my_list = ['a', 'b', 'c']
>>> for idx, val in enumerate(my_list, 1):
print(idx, val)

W N e
.
Nn oo

This case is especially useful for tracking line numbers in files should you want to use
a line number in an error message:

def parse_data(filename):
with open(filename, 'rt') as f:
for lineno, line in enumerate(f, 1):
fields = line.split()
try:
count = int(fields[1])

except ValueError as e:
print('Line {}: Parse error: {}'.format(lineno, e))

4.10. Iterating Over the Index-Value Pairs of a Sequence | 127

enumerate() can be handy for keeping track of the offset into a list for occurrences of
certain values, for example. So, if you want to map words in a file to the lines in which
they occur, it can easily be accomplished using enumerate() to map each word to the
line offset in the file where it was found:

word_summary = defaultdict(list)

with open('myfile.txt', 'r') as f:
lines = f.readlines()

for i1dx, line in enumerate(lines):

Create a list of words in current line

words = [w.strip().lower() for w in line.split()]

for word in words:

word_summary[word].append(idx)

If you print word_summary after processing the file, it’ll be a dictionary (a default
dict to be precise), and it'll have a key for each word. The value for each word-key will
be a list of line numbers that word occurred on. If the word occurred twice on a single
line, that line number will be listed twice, making it possible to identify various simple
metrics about the text.

Discussion

enumerate() is a nice shortcut for situations where you might be inclined to keep your
own counter variable. You could write code like this:

lineno = 1
for line in f:
Process line
lineno += 1
But it’s usually much more elegant (and less error prone) to use enumerate() instead:

for lineno, line in enumerate(f):
Process line

The value returned by enumerate() is an instance of an enumerate object, which is an
iterator that returns successive tuples consisting of a counter and the value returned by
calling next() on the sequence you've passed in.

Although a minor point, it’s worth mentioning that sometimes it is easy to get tripped
up when applying enumerate() to a sequence of tuples that are also being unpacked.
To do it, you have to write code like this:

data = [(1, 2); (3y 4): (5) 6)1 (71 8)]

Correct!
for n, (x, y) in enumerate(data):

128 | Chapter 4: Iterators and Generators

Error!
for n, x, y in enumerate(data):

4.11. Iterating Over Multiple Sequences Simultaneously

Problem

You want to iterate over the items contained in more than one sequence at a time.

Solution

To iterate over more than one sequence simultaneously, use the zip() function. For
example:

>>> xpts = [1, 5, 4, 2, 10, 7]

>>> ypts = [101, 78, 37, 15, 62, 99]

>>> for x, y in zip(xpts, ypts):
print(x,y)

1 101

578

4 37

2 15

10 62

7 99

>>>

zip(a, b) works by creating an iterator that produces tuples (x, y) where x is taken
from a and y is taken from b. Iteration stops whenever one of the input sequences is
exhausted. Thus, the length of the iteration is the same as the length of the shortest
input. For example:

>>> a = [1, 2, 3]

>>>b=[lwl’ ‘XI’ ly|’ |ZI]

>>> for 1 in zip(a,b):
print(i)

~—

i
2,
(3J

>>>

< X =

If this behavior is not desired, use itertools.zip_longest() instead. For example:

>>> from itertools import zip_longest
>>> for 1 in zip_longest(a,b):
print(i)

4.11. Iterating Over Multiple Sequences Simultaneously | 129

(1, 'w")

(2, 'x")

3, 'y"

(None, 'z')

>>> for 1 in zip_longest(a, b, fillvalue=0):

print(i)

(1, 'w
(2, 'x
(3J Iy'
(0, 'z

>>>

Discussion

zip() is commonly used whenever you need to pair data together. For example, suppose
you have a list of column headers and column values like this:

headers = ['name', 'shares', 'price']
values = ['ACME', 100, 490.1]

Using zip(), you can pair the values together to make a dictionary like this:
s = dict(zip(headers,values))
Alternatively, if you are trying to produce output, you can write code like this:

for name, val in zip(headers, values):
print(name, '=', val)

It’s less common, but zip() can be passed more than two sequences as input. For this
case, the resulting tuples have the same number of items in them as the number of input
sequences. For example:

>>> a = [1, 2, 3]

>>> b = [10, 11, 12]
>>>c=[lxl’|yl’|zl]

>>> for 1 in zip(a, b, c):

print(i)
(1, 10, 'x")
(2, 11, 'y")
3, 12, 'z")
>>>

Last, but not least, it’s important to emphasize that zip() creates an iterator as a result.
If you need the paired values stored in a list, use the 1ist() function. For example:

>>> zip(a, b)

<z1p object at 0x1007001b8>
>>> list(zip(a, b))

[(1, 10), (2, 11), (3, 12)]

>>>

130 | Chapter 4: Iterators and Generators

4.12. Iterating on Items in Separate Containers

Problem

You need to perform the same operation on many objects, but the objects are contained
indifferent containers, and you'd like to avoid nested loops without losing the readability
of your code.

Solution

The itertools.chain() method can be used to simplify this task. It takes a list of
iterables as input, and returns an iterator that effectively masks the fact that you're really
acting on multiple containers. To illustrate, consider this example:

>>> from itertools import chain

>>> a = [1, 2, 3, 4]

>>> b = ['x", 'y', 'z']

>>> for x in chain(a, b):
print(x)

N < X D WNRE -
.

>>>

A common use of chain() is in programs where you would like to perform certain
operations on all of the items at once but the items are pooled into different working
sets. For example:

Various working sets of items
active_items = set()
inactive_items = set()

Iterate over all items
for item in chain(active_items, inactive_1items):
Process item

This solution is much more elegant than using two separate loops, as in the following:

for item in active_items:
Process item

for item in inactive_items:
Process item

4.12. Iterating on Items in Separate Containers | 131

Discussion

itertools.chain() accepts one or more iterables as arguments. It then works by cre-
ating an iterator that successively consumes and returns the items produced by each of
the supplied iterables you provided. It’s a subtle distinction, but chain() is more efficient
than first combining the sequences and iterating. For example:

Inefficent
for x in a + b:

Better
for x in chain(a, b):

In the first case, the operation a + b creates an entirely new sequence and additionally
requires a and b to be of the same type. chain() performs no such operation, so it’s far
more efficient with memory if the input sequences are large and it can be easily applied
when the iterables in question are of different types.

4.13. Creating Data Processing Pipelines

Problem

You want to process data iteratively in the style of a data processing pipeline (similar to
Unix pipes). For instance, you have a huge amount of data that needs to be processed,
but it can't fit entirely into memory.

Solution

Generator functions are a good way to implement processing pipelines. To illustrate,
suppose you have a huge directory of log files that you want to process:

foo/
access-10g-012007.9z
access-1og-022007.gz
access-10g-032007.9z

access-1og-012008
bar/
access-1o0g-092007.bz2

access-1log-022008

Suppose each file contains lines of data like this:

124.115.6.12 - - [10/Jul/2012:00:18:50 -0500] "GET /robots.txt ..." 200 71
210.212.209.67 - - [10/Jul/2012:00:18:51 -0500] "GET /ply/ ..." 200 11875
210.212.209.67 - - [10/Jul/2012:00:18:51 -0500] "GET /favicon.ico ..." 404 369

132 | Chapter 4: Iterators and Generators

61.135.216.105 - - [10/Jul/2012:00:20:04 -0500] "GET /blog/atom.xml ..." 304 -

To process these files, you could define a collection of small generator functions that
perform specific self-contained tasks. For example:

import os
import fnmatch
import gzip
import bz2
import re

def gen_find(filepat, top):

o

Find all filenames in a directory tree that match a shell wildcard pattern
for path, dirlist, filelist in os.walk(top):
for name in fnmatch.filter(filelist, filepat):
yield os.path.join(path,name)

def gen_opener(filenames):
Open a sequence of filenames one at a time producing a file object.
The file is closed immediately when proceeding to the next iteration.

o

for filename in filenames:

if filename.endswith('.gz'):

f = gzip.open(filename, 'rt')
elif filename.endswith('.bz2'):

f = bz2.open(filename, 'rt')
else:

f = open(filename, 'rt')
yield f
f.close()

def gen_concatenate(iterators):

T

Chain a sequence of iterators together into a single sequence.

T

for it in iterators:
yield from it

def gen_grep(pattern, lines):

o

Look for a regex pattern in a sequence of lines

o

pat = re.compile(pattern)
for line in lines:
if pat.search(line):
yield line

You can now easily stack these functions together to make a processing pipeline. For
example, to find all log lines that contain the word python, you would just do this:

4.13. Creating Data Processing Pipelines | 133

lognames = gen_find('access-log*', 'www')

files = gen_opener(lognames)

lines = gen_concatenate(files)

pylines = gen_grep('(?1)python', lines)

for line in pylines:

print(line)

If you want to extend the pipeline further, you can even feed the data in generator
expressions. For example, this version finds the number of bytes transferred and sums
the total:

lognames = gen_find('access-log*', 'www')

files = gen_opener(lognames)

lines = gen_concatenate(files)

pylines = gen_grep('(?i)python', lines)

bytecolumn = (line.rsplit(None,1)[1] for line in pylines)
bytes = (int(x) for x in bytecolumn if x != '-')
print('Total', sum(bytes))

Discussion

Processing data in a pipelined manner works well for a wide variety of other problems,
including parsing, reading from real-time data sources, periodic polling, and so on.

In understanding the code, it is important to grasp that the yield statement acts as a
kind of data producer whereas a for loop acts as a data consumer. When the generators
are stacked together, each yield feeds a single item of data to the next stage of the
pipeline that is consuming it with iteration. In the last example, the sum() function is
actually driving the entire program, pulling one item at a time out of the pipeline of
generators.

One nice feature of this approach is that each generator function tends to be small and
self-contained. As such, they are easy to write and maintain. In many cases, they are so
general purpose that they can be reused in other contexts. The resulting code that glues
the components together also tends to read like a simple recipe that is easily understood.

The memory efficiency of this approach can also not be overstated. The code shown
would still work even if used on a massive directory of files. In fact, due to the iterative
nature of the processing, very little memory would be used at all.

There is a bit of extreme subtlety involving the gen_concatenate() function. The
purpose of this function is to concatenate input sequences together into one long se-
quence of lines. The itertools.chain() function performs a similar function, but re-
quires that all of the chained iterables be specified as arguments. In the case of this
particular recipe, doing that would involve a statement such as lines = {iter

tools.chain(*files), which would cause the gen_opener () generator to be fully con-
sumed. Since that generator is producing a sequence of open files that are immediately

134 | Chapter 4: Iterators and Generators

closed in the next iteration step, chain() can't be used. The solution shown avoids this
issue.

Also appearing in the gen_concatenate() function is the use of yield fromto delegate
to a subgenerator. The statement yield from it simply makes gen_concatenate()
emit all of the values produced by the generator it. This is described further in
Recipe 4.14.

Last, but not least, it should be noted that a pipelined approach doesn’t always work for
every data handling problem. Sometimes you just need to work with all of the data at
once. However, even in that case, using generator pipelines can be a way to logically
break a problem down into a kind of workflow.

David Beazley has written extensively about these techniques in his “Generator Tricks
for Systems Programmers” tutorial presentation. Consult that for even more examples.

4.14. Flattening a Nested Sequence

Problem

You have a nested sequence that you want to flatten into a single list of values.

Solution

This is easily solved by writing a recursive generator function involving a yield from
statement. For example:

from collections import Iterable

def flatten(items, ignore_types=(str, bytes)):
for x in items:
if isinstance(x, Iterable) and not isinstance(x, ignore_types):
yield from flatten(x)
else:
yield x

items = [1, 2, [3, 4, [5, 6], 7], 8]

Produces 12345678
for x in flatten(items):
print(x)
In the code, the isinstance(x, Iterable) simply checks to see if an item is iterable.
If so, yield fromis used to emit all of its values as a kind of subroutine. The end result
is a single sequence of output with no nesting.

The extra argument ignore_types and the check for not isinstance(x, 1ig
nore_types) is there to prevent strings and bytes from being interpreted as iterables

4.14. Flattening a Nested Sequence | 135

http://www.dabeaz.com/generators
http://www.dabeaz.com/generators

and expanded as individual characters. This allows nested lists of strings to work in the
way that most people would expect. For example:
>>> items = ['Dave', 'Paula', ['Thomas', 'Lewis']]

>>> for x in flatten(items):
print(x)

Dave

Paula

Thomas

Lewis
>>>

Discussion

The yield fromstatement is a nice shortcut to use if you ever want to write generators
that call other generators as subroutines. If you don't use it, you need to write code that
uses an extra for loop. For example:
def flatten(items, ignore_types=(str, bytes)):
for x in items:
if isinstance(x, Iterable) and not isinstance(x, ignore_types):
for 1 in flatten(x):
yield i
else:
yield x

Although it’s only a minor change, the yield fromstatement just feels better and leads
to cleaner code.

As noted, the extra check for strings and bytes is there to prevent the expansion of those
types into individual characters. If there are other types that you don’t want expanded,
you can supply a different value for the ignore_types argument.

Finally, it should be noted that yield from has a more important role in advanced
programs involving coroutines and generator-based concurrency. See Recipe 12.12 for
another example.

4.15. Iterating in Sorted Order Over Merged Sorted
Iterables

Problem

You have a collection of sorted sequences and you want to iterate over a sorted sequence
of them all merged together.

136 | Chapter 4: Iterators and Generators

Solution
The heapq.merge() function does exactly what you want. For example:

>>> import heapq

>>> a = [1, 4, 7, 10]

>>> b = [2, 5, 6, 11]

>>> for c in heapq.merge(a, b):

print(c)
1
2
4
5
6
7
10
11
Discussion

The iterative nature of heapq.merge means that it never reads any of the supplied se-
quences all at once. This means that you can use it on very long sequences with very

little overhead. For instance, here is an example of how you would merge two sorted
files:

import heapq

with open('sorted_file_1', 'rt') as filel, \
open('sorted_file_2') 'rt' as file2, \
open('merged_file', 'wt') as outf:

for line in heapq.merge(filel, file2):
outf.write(line)

It’s important to emphasize that heapq.merge() requires that all of the input sequences
already be sorted. In particular, it does not first read all of the data into a heap or do any
preliminary sorting. Nor does it perform any kind of validation of the inputs to check
ifthey meet the ordering requirements. Instead, it simply examines the set of items from
the front of each input sequence and emits the smallest one found. A new item from
the chosen sequence is then read, and the process repeats itself until all input sequences
have been fully consumed.

4.15. Iterating in Sorted Order Over Merged Sorted Iterables | 137

4.16. Replacing Infinite while Loops with an Iterator

Problem

You have code that uses a while loop to iteratively process data because it involves a
function or some kind of unusual test condition that doesn’t fall into the usual iteration
pattern.

Solution
A somewhat common scenario in programs involving I/O is to write code like this:

CHUNKSIZE = 8192

def reader(s):

while True:
data = s.recv(CHUNKSIZE)
if data == b'":
break

process_data(data)
Such code can often be replaced using iter(), as follows:

def reader(s):
for chunk in iter(lambda: s.recv(CHUNKSIZE), b''):
process_data(data)
If you're a bit skeptical that it might work, you can try a similar example involving files.
For example:
>>> import sys
>>> f = open('/etc/passwd')

>>> for chunk in iter(lambda: f.read(10), ''):
n = sys.stdout.write(chunk)

nobody:*:-2:-2:Unprivileged User:/var/empty:/usr/bin/false
root:*:0:0:System Administrator:/var/root:/bin/sh

daemon:*:1:1:System Services:/var/root:/usr/bin/false

_uucp:*:4:4:Unix to Unix Copy Protocol:/var/spool/uucp:/usr/sbin/uucico

>>>

Discussion

Alittle-known feature of the built-in i1ter () function is that it optionally accepts a zero-
argument callable and sentinel (terminating) value as inputs. When used in this way, it
creates an iterator that repeatedly calls the supplied callable over and over again until it
returns the value given as a sentinel.

138 | Chapter 4: Iterators and Generators

This particular approach works well with certain kinds of repeatedly called functions,
such as those involving I/O. For example, if you want to read data in chunks from sockets
or files, you usually have to repeatedly execute read() or recv() calls followed by an
end-of-file test. This recipe simply takes these two features and combines them together
into a single iter () call. The use of lambda in the solution is needed to create a callable
that takes no arguments, yet still supplies the desired size argument to recv() or read().

4.16. Replacing Infinite while Loops with an Iterator | 139

CHAPTER 5
Files and 1/0

All programs need to perform input and output. This chapter covers common idioms
for working with different kinds of files, including text and binary files, file encodings,
and other related matters. Techniques for manipulating filenames and directories are
also covered.

5.1. Reading and Writing Text Data

Problem

You need to read or write text data, possibly in different text encodings such as ASCII,
UTEF-8, or UTF-16.

Solution
Use the open() function with mode rt to read a text file. For example:

Read the entire file as a single string
with open('somefile.txt', 'rt') as f:
data = f.read()

Iterate over the lines of the file
with open('somefile.txt', 'rt') as f:
for line in f:
process line

Similarly, to write a text file, use open() with mode wt to write a file, clearing and
overwriting the previous contents (if any). For example:

Write chunks of text data
with open('somefile.txt', 'wt') as f:
f.write(text1)

141

f.write(text2)

Redirected print statement

with open('somefile.txt', 'wt') as f:
print(linel, file=f)
print(line2, file=f)

To append to the end of an existing file, use open() with mode at.

By default, files are read/written using the system default text encoding, as can be found
in sys.getdefaultencoding(). On most machines, this is set to utf-8. If you know
that the text you are reading or writing is in a different encoding, supply the optional
encoding parameter to open(). For example:

with open('somefile.txt', 'rt', encoding='latin-1') as f:

Python understands several hundred possible text encodings. However, some of the
more common encodings are ascit, latin-1, utf-8, and utf-16. UTF-8 is usually a
safe bet if working with web applications. ascii corresponds to the 7-bit characters in
the range U+0000 to U+007F. latin-1 is a direct mapping of bytes 0-255 to Unicode
characters U+0000 to U+00FFE latin-1encodingis notable in that it will never produce
a decoding error when reading text of a possibly unknown encoding. Reading a file as
latin-1 might not produce a completely correct text decoding, but it still might be
enough to extract useful data out of it. Also, if you later write the data back out, the
original input data will be preserved.

Discussion

Reading and writing text files is typically very straightforward. However, there are a
number of subtle aspects to keep in mind. First, the use of the with statement in the
examples establishes a context in which the file will be used. When control leaves the
withblock, the file will be closed automatically. You don’t need to use the with statement,
but if you don't use it, make sure you remember to close the file:

f = open('somefile.txt', 'rt')

data = f.read()

f.close()
Another minor complication concerns the recognition of newlines, which are different
on Unixand Windows (i.e., \nversus \r\n). By default, Python operates in what’s known
as “universal newline” mode. In this mode, all common newline conventions are rec-
ognized, and newline characters are converted to a single \n character while reading.
Similarly, the newline character \n is converted to the system default newline character

142 | Chapter5:Filesand /0

on output. If you don’t want this translation, supply the newline='"' argument to
open(), like this:

Read with disabled newline translation
with open('somefile.txt', 'rt', newline='"') as f:

To illustrate the difference, here’s what you will see on a Unix machine if you read the
contents of a Windows-encoded text file containing the raw data hello world!\r\n:

>>> # Newline translation enabled (the default)
>>> f = open('hello.txt', 'rt')

>>> f.read()

'hello world!\n'

>>> # Newline translation disabled

>>> g = open('hello.txt', 'rt', newline='")
>>> g.read()

"hello world!\r\n'

>>>

A final issue concerns possible encoding errors in text files. When reading or writing a
text file, you might encounter an encoding or decoding error. For instance:

>>> f = open('sample.txt', 'rt', encoding='ascii')
>>> f.read()

File "<stdin>", line 1, in <module>
File "/usr/local/lib/python3.3/encodings/ascii.py", line 26, in decode
return codecs.ascii_decode(input, self.errors)[0]
UnicodeDecodeError: 'ascii' codec can't decode byte 0xc3 in position
12: ordinal not in range(128)

>>>

If you get this error, it usually means that youre not reading the file in the correct
encoding. You should carefully read the specification of whatever it is that you're reading
and check that you’re doing it right (e.g., reading data as UTF-8 instead of Latin-1 or
whatever it needs to be). If encoding errors are still a possibility, you can supply an
optional errors argument to open() to deal with the errors. Here are a few samples of
common error handling schemes:

>>> # Replace bad chars with Unicode U+fffd replacement char

>>> f = open('sample.txt', 'rt', encoding="asciil', errors='replace')
>>> f.read()

'Spicy Jalape?o!'’

>>> # Ignore bad chars entirely

>>> g = open('sample.txt', 'rt', encoding='asciil', errors='ignore')
>>> g.read()

'Spicy Jalapeo!'

>>>

5.1.Reading and Writing Text Data | 143

If youre constantly fiddling with the encoding and errors arguments to open() and
doing lots of hacks, youre probably making life more difficult than it needs to be. The
number one rule with text is that you simply need to make sure you're always using the
proper text encoding. When in doubt, use the default setting (typically UTE-8).

5.2. Printing to a File

Problem

You want to redirect the output of the print() function to a file.

Solution
Use the file keyword argument to print(), like this:
with open('somefile.txt', 'rt') as f:

print('Hello World!', file=f)

Discussion

There’s not much more to printing to a file other than this. However, make sure that the
file is opened in text mode. Printing will fail if the underlying file is in binary mode.

5.3. Printing with a Different Separator or Line Ending

Problem

You want to output data using print(), but you also want to change the separator
character or line ending.

Solution

Use the sep and end keyword arguments to print() to change the output as you wish.
For example:

>>> print('ACME', 50, 91.5)

ACME 50 91.5

>>> print('ACME', 50, 91.5, sep=",")
ACME,50,91.5

>>> print('ACME', 50, 91.5, sep=',', end='!!\n")
ACME,50,91.5!!

>>>

Use of the end argument is also how you suppress the output of newlines in output. For
example:

144 | Chapter5:Filesand /0

>>> for 1 in range(5):
print(i)

A wWNRL O
.

>>> for 1 in range(5):
print(i, end=' ")

01234>>

Discussion

Using print() with a different item separator is often the easiest way to output data
when you need something other than a space separating the items. Sometimes you’ll
see programmers using str.join() to accomplish the same thing. For example:

>>> print(','.join('ACME','50"','91.5"))

ACME,50,91.5

>>>

The problem with str.join() is that it only works with strings. This means that it’s
often necessary to perform various acrobatics to get it to work. For example:

>>> row = ('ACME', 50, 91.5)
>>> print(','.join(row))

File "<stdin>", line 1, in <module>
TypeError: sequence item 1: expected str instance, int found
>>> print(','.joln(str(x) for x in row))
ACME,50,91.5

>>>
Instead of doing that, you could just write the following:
>>> print(*row, sep=',")

ACME,50,91.5

>>>

5.4. Reading and Writing Binary Data

Problem

You need to read or write binary data, such as that found in images, sound files, and so
on.

5.4.Reading and Writing Binary Data | 145

Solution

Use the open() function with mode rb or wb to read or write binary data. For example:

Read the entire file as a single byte string
with open('somefile.bin', 'rb') as f:
data = f.read()

Write binary data to a file
with open('somefile.bin', 'wb') as f:
f.write(b'Hello World')
When reading binary, it is important to stress that all data returned will be in the form
of byte strings, not text strings. Similarly, when writing, you must supply data in the
form of objects that expose data as bytes (e.g., byte strings, bytearray objects, etc.).

Discussion

When reading binary data, the subtle semantic differences between byte strings and text
strings pose a potential gotcha. In particular, be aware that indexing and iteration return
integer byte values instead of byte strings. For example:

>>> # Text string

>>> t = 'Hello World'

>>> t[0]

"y

>>> for c in t:
print(c)

O —~c~ m® I -
.

>>> # Byte string

>>> b = b'Hello World'

>>> b[0]

72

>>> for ¢ in b:
print(c)

72

101

108

108

111

>>>

146 | Chapter5:Filesand /0

If you ever need to read or write text from a binary-mode file, make sure you remember
to decode or encode it. For example:
with open('somefile.bin', 'rb') as f:

data = f.read(16)
text = data.decode('utf-8")

with open('somefile.bin', 'wb') as f:
text = 'Hello World'
f.write(text.encode('utf-8'))
A lesser-known aspect of binary I/O is that objects such as arrays and C structures can
be used for writing without any kind of intermediate conversion to a bytes object. For
example:
import array
nums = array.array('i', [1, 2, 3, 4])
with open('data.bin','wb') as f:
f.write(nums)
This applies to any object that implements the so-called “buffer interface,” which directly
exposes an underlying memory buffer to operations that can work with it. Writing
binary data is one such operation.

Many objects also allow binary data to be directly read into their underlying memory
using the readinto() method of files. For example:

>>> import array

>>> a = array.array('i', [0, 0, 0, 0, 0, 0, 0, 0])

>>> with open('data.bin', 'rb') as f:
f.readinto(a)

16
>>> a

array('i', [1, 2, 3, 4, 0, 0, 0, 0])

>>>

However, great care should be taken when using this technique, as it is often platform
specific and may depend on such things as the word size and byte ordering (i.e., big
endian versus little endian). See Recipe 5.9 for another example of reading binary data
into a mutable buffer.

5.5. Writing to a File That Doesn’t Already Exist

Problem

You want to write data to a file, but only if it doesn’t already exist on the filesystem.

5.5. Writing to a File That Doesn't Already Exist | 147

Solution

This problem is easily solved by using the little-known x mode to open() instead of the
usual w mode. For example:

>>> with open('somefile', 'wt') as f:
f.write('Hello\n")

>>> with open('somefile', 'xt') as f:
f.write('Hello\n")

File "<stdin>", line 1, in <module>
FileExistsError: [Errno 17] File exists: 'somefile'
>>>

If the file is binary mode, use mode xb instead of xt.

Discussion

This recipe illustrates an extremely elegant solution to a problem that sometimes arises
when writing files (i.e., accidentally overwriting an existing file). An alternative solution
is to first test for the file like this:

>>> import os
>>> if not os.path.exists('somefile'):
with open('somefile', 'wt') as f:
f.write('Hello\n")
. else:
print('File already exists!')

File already exists!
>>>

Clearly, using the x file mode is a lot more straightforward. It is important to note that
the x mode is a Python 3 specific extension to the open() function. In particular, no
such mode exists in earlier Python versions or the underlying Clibraries used in Python’s
implementation.

5.6. Performing /0 Operations on a String

Problem

You want to feed a text or binary string to code that’s been written to operate on file-
like objects instead.

148 | Chapter5:Filesand /0

Solution

Use the 10.StringI0() and 10.BytesIO() classes to create file-like objects that operate
on string data. For example:

>>> s = 10.StringIOo()

>>> s.write('Hello World\n")

12

>>> print('This is a test', file=s)

15

>>> # Get all of the data written so far
>>> s.getvalue()

'Hello World\nThis is a test\n'

>>>

>>> # Wrap a file interface around an existing string
>>> s = 10.S5tringI0('Hello\nWorld\n")

>>> s.read(4)

'Hell'

>>> s.read()

'o\nWorld\n'

>>>

The 10.StringIO class should only be used for text. If you are operating with binary
data, use the 10.BytesIO class instead. For example:

>>> s = 10.BytesIO()

>>> s.write(b'binary data')

>>> s.getvalue()

b'binary data'

>>>

Discussion

The StringIO0andBytesIOclassesare mostusefulinscenarios where you need to mimic
a normal file for some reason. For example, in unit tests, you might use StringIO to
create a file-like object containing test data that’s fed into a function that would otherwise
work with a normal file.

Be aware that StringIO and BytesIO instances don't have a proper integer file-
descriptor. Thus, they do not work with code that requires the use of a real system-level
file such as a file, pipe, or socket.

5.7.Reading and Writing Compressed Datafiles

Problem

You need to read or write data in a file with gzip or bz2 compression.

5.7. Reading and Writing Compressed Datafiles | 149

Solution

The gzip and bz2 modules make it easy to work with such files. Both modules provide
an alternative implementation of open() that can be used for this purpose. For example,
to read compressed files as text, do this:

gzip compression

import gzip

with gzip.open('somefile.gz', 'rt') as f:
text = f.read()

bz2 compression

import bz2

with bz2.open('somefile.bz2', 'rt') as f:
text = f.read()

Similarly, to write compressed data, do this:

gzip compression

import gzip

with gzip.open('somefile.gz', 'wt') as f:
f.write(text)

bz2 compression
import bz2
with bz2.open('somefile.bz2', 'wt') as f:
f.write(text)
As shown, all I/O will use text and perform Unicode encoding/decoding. If you want

to work with binary data instead, use a file mode of rb or wb.

Discussion

For the most part, reading or writing compressed data is straightforward. However, be
aware that choosing the correct file mode is critically important. If you don’t specify a
mode, the default mode is binary, which will break programs that expect to receive text.
Both gzip.open() and bz2.open() accept the same parameters as the built-in open()
function, including encoding, errors, newline, and so forth.

When writing compressed data, the compression level can be optionally specified using
the compresslevel keyword argument. For example:

with gzip.open('somefile.gz', 'wt', compresslevel=5) as f:
f.write(text)

The defaultlevel is 9, which provides the highest level of compression. Lower levels offer
better performance, but not as much compression.

Finally, alittle-known feature of gzip.open() and bz2.open() is that they can be layered
on top of an existing file opened in binary mode. For example, this works:

150 | Chapter5:Filesand /0

import gzip

f = open('somefile.gz', 'rb")
with gzip.open(f, 'rt') as g:
text = g.read()

This allows the gzip and bz2 modules to work with various file-like objects such as
sockets, pipes, and in-memory files.

5.8. Iterating Over Fixed-Sized Records

Problem

Instead of iterating over a file by lines, you want to iterate over a collection of fixed-
sized records or chunks.

Solution
Use the iter () function and functools.partial() using this neat trick:

from functools import partial
RECORD_SIZE = 32

with open('somefile.data', 'rb') as f:
records = iter(partial(f.read, RECORD_SIZE), b'")
for r in records:

The records object in this example is an iterable that will produce fixed-sized chunks
until the end of the file is reached. However, be aware that the last item may have fewer
bytes than expected if the file size is not an exact multiple of the record size.

Discussion

A little-known feature of the iter () function is that it can create an iterator if you pass
ita callable and a sentinel value. The resulting iterator simply calls the supplied callable
over and over again until it returns the sentinel, at which point iteration stops.

In the solution, the functools.partial is used to create a callable that reads a fixed
number of bytes from a file each time it’s called. The sentinel of b' ' is what gets returned
when a file is read but the end of file has been reached.

Last, but not least, the solution shows the file being opened in binary mode. For reading
fixed-sized records, this would probably be the most common case. For text files, reading
line by line (the default iteration behavior) is more common.

5.8. Iterating Over Fixed-Sized Records | 151

5.9. Reading Binary Data into a Mutable Buffer

Problem

You want to read binary data directly into a mutable buffer without any intermediate
copying. Perhaps you want to mutate the data in-place and write it back out to a file.

Solution
To read data into a mutable array, use the readinto() method of files. For example:

import os.path

def read_into_buffer(filename):
buf = bytearray(os.path.getsize(filename))
with open(filename, 'rb') as f:
f.readinto(buf)
return buf

Here is an example that illustrates the usage:

>>> # Write a sample file
>>> with open('sample.bin', 'wb') as f:
f.write(b'Hello World")

>>> buf = read_into_buffer('sample.bin')

>>> buf

bytearray(b'Hello World')

>>> buf[0:5] = b'Hallo'

>>> buf

bytearray(b'Hallo World')

>>> with open('newsample.bin', 'wb') as f:
f.write(buf)

11

>>>

Discussion

The readinto() method of files can be used to fill any preallocated array with data. This
even includes arrays created from the array module or libraries such as numpy. Unlike
the normal read() method, readinto() fills the contents of an existing buffer rather
than allocating new objects and returning them. Thus, you might be able to use it to
avoid making extra memory allocations. For example, if you are reading a binary file
consisting of equally sized records, you can write code like this:

record_size = 32 # Size of each record (adjust value)

buf = bytearray(record_size)
with open('somefile', 'rb') as f:

152 | Chapter5:Filesand /0

while True:
n = f.readinto(buf)
if n < record_size:
break
Use the contents of buf

Another interesting feature to use here might be a memoryview, which lets you make
zero-copy slices of an existing buffer and even change its contents. For example:

>>> buf

bytearray(b'Hello World')
>>> ml1 = memoryview(buf)
>>> m2 = mi[-5:]

>>> m2

<memory at 0x100681390>
>>> m2[:] = b'WORLD'

>>> buf
bytearray(b'Hello WORLD')

>>>

One caution with using f.readinto() is that you must always make sure to check its
return code, which is the number of bytes actually read.

If the number of bytes is smaller than the size of the supplied buffer, it might indicate
truncated or corrupted data (e.g., if you were expecting an exact number of bytes to be

read).

Finally, be on the lookout for other “into” related functions in various library modules
(e.g., recv_1into(), pack_into(), etc.). Many other parts of Python have support for
direct I/O or data access that can be used to fill or alter the contents of arrays and buffers.

See Recipe 6.12 for a significantly more advanced example of interpreting binary struc-
tures and usage of memoryviews.

5.10. Memory Mapping Binary Files

Problem

You want to memory map a binary file into a mutable byte array, possibly for random
access to its contents or to make in-place modifications.

Solution

Use the mmap module to memory map files. Here is a utility function that shows how to
open a file and memory map it in a portable manner:

import os
import mmap

5.10. Memory Mapping Binary Files | 153

def memory_map(filename, access=mmap.ACCESS_WRITE):
size = os.path.getsize(filename)
fd = os.open(filename, os.0_RDWR)
return mmap.mmap(fd, size, access=access)

To use this function, you would need to have a file already created and filled with data.
Here is an example of how you could initially create a file and expand it to a desired
size:

>>> size = 1000000

>>> with open('data', 'wb') as f:
f.seek(size-1)
f.write(b'\x00")

>>>

Now here is an example of memory mapping the contents using the memory_map()
function:

>>> m = memory_map('data')

>>> len(m)

1000000

>>> m[0:10]
b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
>>> m[0]

0

>>> # Reassign a slice

>>> m[0:11] = b'Hello World'

>>> m.close()

>>> # Verify that changes were made
>>> with open('data', 'rb') as f:
print(f.read(11))

b'Hello World'

>>>

The mmap object returned by mmap() can also be used as a context manager, in which
case the underlying file is closed automatically. For example:

>>> with memory_map('data') as m:
print(len(m))
print(m[0:10])

1000000

b'Hello World'

>>> m.closed

True
>>>

By default, the memory_map() function shown opens a file for both reading and writing.
Any modifications made to the data are copied back to the original file. If read-only

154 | Chapter5:Filesand /0

access is needed instead, supply mmap.ACCESS_READ for the access argument. For
example:

m = memory_map(filename, mmap.ACCESS_READ)

If you intend to modify the data locally, but don't want those changes written back to
the original file, use mmap.ACCESS_COPY:

m = memory_map(filename, mmap.ACCESS_COPY)

Discussion

Using mmap to map files into memory can be an efficient and elegant means for randomly
accessing the contents of a file. For example, instead of opening a file and performing
various combinations of seek(), read(), and write() calls, you can simply map the
file and access the data using slicing operations.

Normally, the memory exposed by mmap () looks like a bytearray object. However, you
can interpret the data differently using a memoryview. For example:

>>> m = memory_map('data')

>>> # Memoryview of unsigned integers
>>> v = memoryview(m).cast('I")

>>> v[0] = 7

>>> m[0:4]

b'\x07\x00\x00\x00'

>>> m[0:4] = b'\x07\x01\x00\x00'

>>> v[0]

263

>>>
It should be emphasized that memory mapping a file does not cause the entire file to be
read into memory. That is, it’s not copied into some kind of memory buffer or array.
Instead, the operating system merely reserves a section of virtual memory for the file
contents. As you access different regions, those portions of the file will be read and
mapped into the memory region as needed. However, parts of the file that are never
accessed simply stay on disk. This all happens transparently, behind the scenes.

If more than one Python interpreter memory maps the same file, the resulting mmap
object can be used to exchange data between interpreters. That is, all interpreters can
read/write data simultaneously, and changes made to the data in one interpreter will
automatically appear in the others. Obviously, some extra care is required to synchronize
things, but this kind of approach is sometimes used as an alternative to transmitting
data in messages over pipes or sockets.

As shown, this recipe has been written to be as general purpose as possible, working on
both Unix and Windows. Be aware that there are some platform differences concerning
the use of the mmap() call hidden behind the scenes. In addition, there are options to

5.10. Memory Mapping Binary Files | 155

create anonymously mapped memory regions. If this is of interest to you, make sure
you carefully read the Python documentation on the subject.

5.11. Manipulating Pathnames

Problem

You need to manipulate pathnames in order to find the base filename, directory name,
absolute path, and so on.

Solution

To manipulate pathnames, use the functions in the os.path module. Here is an inter-
active example that illustrates a few key features:

>>> import os
>>> path = '/Users/beazley/Data/data.csv'

>>> # Get the last component of the path
>>> o0s.path.basename(path)
'data.csv'

>>> # Get the directory name
>>> os.path.dirname(path)
' [Users/beazley/Data’

>>> # Join path components together
>>> os.path.join('tmp', 'data', os.path.basename(path))
'tmp/data/data.csv'

>>> # Expand the user's home directory
>>> path = '~/Data/data.csv'

>>> 0s.path.expanduser(path)

' /Users/beazley/Data/data.csv'

>>> # Split the file extension
>>> os.path.splitext(path)
('~/Data/data', '.csv')

>>>

Discussion

For any manipulation of filenames, you should use the os . path module instead of trying
to cook up your own code using the standard string operations. In part, this is for
portability. The os. path module knows about differences between Unix and Windows
and can reliably deal with filenames such as Data/data.csv and Data\data.csv. Second,
you really shouldn’t spend your time reinventing the wheel. It’s usually best to use the
functionality that’s already provided for you.

156 | Chapter5:Filesand /0

http://docs.python.org/3/library/mmap.html

It should be noted that the os. path module has many more features not shown in this
recipe. Consult the documentation for more functions related to file testing, symbolic
links, and so forth.

5.12. Testing for the Existence of a File

Problem

You need to test whether or not a file or directory exists.

Solution
Use the os. path module to test for the existence of a file or directory. For example:

>>> import os

>>> os.path.exists('/etc/passwd')
True

>>> os.path.exists('/tmp/spam')
False

>>>

You can perform further tests to see what kind of file it might be. These tests return
False if the file in question doesn’t exist:

>>> # Is a regular file
>>> os.path.isfile('/etc/passwd')
True

>>> # Is a directory
>>> os.path.isdir('/etc/passwd')
False

>>> # Is a symbolic link
>>> os.path.islink('/usr/local/bin/python3")
True

>>> # Get the file linked to
>>> os.path.realpath('/usr/local/bin/python3")
'Jusr/local/bin/python3.3'

>>>

If you need to get metadata (e.g., the file size or modification date), that is also available
in the os.path module.

>>> o0s.path.getsize('/etc/passwd')

3669

>>> o0s.path.getmtime('/etc/passwd')
1272478234.0

>>> import time

>>> time.ctime(os.path.getmtime('/etc/passwd'))

5.12.Testing for the Existence of aFile | 157

'Wed Apr 28 13:10:34 2010'

>>>

Discussion

File testing is a straightforward operation using os. path. Probably the only thing to be
aware of when writing scripts is that you might need to worry about permissions—
especially for operations that get metadata. For example:

>>> o0s.path.getsize('/Users/quido/Desktop/foo.txt")

File "<stdin>", 1ine 1, in <module>
File "/usr/local/lib/python3.3/genericpath.py", line 49, in getsize
return os.stat(filename).st_size
PermissionError: [Errno 13] Permission denied: '/Users/guido/Desktop/foo.txt'
>>>

5.13. Getting a Directory Listing

Problem

You want to get a list of the files contained in a directory on the filesystem.

Solution
Use the os.listdir() function to obtain a list of files in a directory:

import os

names = os.listdir('somedir")
This will give you the raw directory listing, including all files, subdirectories, symbolic
links, and so forth. If you need to filter the data in some way, consider using a list
comprehension combined with various functions in the os.path library. For example:

import os.path
Get all regular files
names = [name for name in os.listdir('somedir')
if os.path.isfile(os.path.join('somedir', name))]

Get all dirs
dirnames = [name for name in os.listdir('somedir')
if os.path.isdir(os.path.join('somedir', name))]
The startswith() and endswith() methods of strings can be useful for filtering the
contents of a directory as well. For example:

pyfiles = [name for name in os.listdir('somedir')
if name.endswith('.py')]

158 | Chapter5:Filesand /0

For filename matching, you may want to use the glob or fnmatch modules instead. For
example:

import glob
pyfiles = glob.glob('somedir/*.py")

from fnmatch import fnmatch
pyfiles = [name for name in os.listdir('somedir')
if fnmatch(name, '*.py')]

Discussion

Getting a directory listing is easy, but it only gives you the names of entries in the
directory. If you want to get additional metadata, such as file sizes, modification dates,
and so forth, you either need to use additional functions in the os . path module or use
the os.stat() function. To collect the data. For example:

Example of getting a directory listing

import os
import os.path
import glob

pyfiles = glob.glob('*.py")

Get file sizes and modification dates
name_sz_date = [(name, os.path.getsize(name), os.path.getmtime(name))
for name in pyfiles]

for name, size, mtime in name_sz_date:
print(name, size, mtime)

Alternative: Get file metadata

file_metadata = [(name, os.stat(name)) for name in pyfiles]

for name, meta in file_metadata:

print(name, meta.st_size, meta.st_mtime)

Last, but notleast, be aware that there are subtle issues that can arise in filename handling
related to encodings. Normally, the entries returned by a function such as os.list
dir() are decoded according to the system default filename encoding. However, it’s
possible under certain circumstances to encounter un-decodable filenames. Recipes
5.14 and 5.15 have more details about handling such names.

5.13. Getting a Directory Listing | 159

5.14. Bypassing Filename Encoding

Problem

You want to perform file I/O operations using raw filenames that have not been decoded
or encoded according to the default filename encoding.

Solution

By default, all filenames are encoded and decoded according to the text encoding re-
turned by sys.getfilesystemencoding(). For example:

>>> sys.getfilesystemencoding()

'utf-8'

>>>
If you want to bypass this encoding for some reason, specify a filename using a raw byte
string instead. For example:

>>> # Wrte a file using a unicode filename
>>> with open('jalape\xflo.txt', 'w') as f:
f.write('Spicy!")

6

>>> # Directory listing (decoded)
>>> import os

>>> os.listdir('.")
['jalapeno.txt']

>>> # Directory listing (raw)
>>> os.listdir(b'.") # Note: byte string
[b'jalapen\xcc\x830.txt"']

>>> # Open file with raw filename
>>> with open(b'jalapen\xcc\x830.txt') as f:
print(f.read())

Spicy!
>>>

Asyou can see in the last two operations, the filename handling changes ever so slightly
when byte strings are supplied to file-related functions, such as open() and os.list
dir().

Discussion

Under normal circumstances, you shouldn't need to worry about filename encoding
and decoding—normal filename operations should just work. However, many operating
systems may allow a user through accident or malice to create files with names that don’t

160 | Chapter5:Filesand /0

conform to the expected encoding rules. Such filenames may mysteriously break Python
programs that work with a lot of files.

Reading directories and working with filenames as raw undecoded bytes has the po-
tential to avoid such problems, albeit at the cost of programming convenience.

See Recipe 5.15 for a recipe on printing undecodable filenames.

5.15. Printing Bad Filenames

Problem

Your program received a directory listing, but when it tried to print the filenames, it
crashed with a UnicodeEncodeError exception and a cryptic message about “surrogates
not allowed.”

Solution
When printing filenames of unknown origin, use this convention to avoid errors:

def bad_filename(filename):
return repr(filename)[1:-1]

try:
print(filename)

except UnicodeEncodeError:
print(bad_filename(filename))

Discussion

This recipe is about a potentially rare but very annoying problem regarding programs
that must manipulate the filesystem. By default, Python assumes that all filenames are
encoded according to the setting reported by sys.getfilesystemencoding(). How-
ever, certain filesystems don’t necessarily enforce this encoding restriction, thereby al-
lowing files to be created without proper filename encoding. It’s not common, but there
is always the danger that some user will do something silly and create such a file by
accident (e.g., maybe passing a bad filename to open() in some buggy code).

When executing a command such as os.listdir(), bad filenames leave Python in a
bind. On the one hand, it can’t just discard bad names. On the other hand, it still can't
turn the filename into a proper text string. Python’s solution to this problem is to take
an undecodable byte value \xhh in a filename and map it into a so-called “surrogate
encoding” represented by the Unicode character \udchh. Here is an example of how a
bad directory listing might look if it contained a filename bdd.txt, encoded as Latin-1
instead of UTF-8:

5.15. Printing Bad Filenames | 161

>>> import os

>>> files = os.listdir('.")

>>> files

['spam.py', 'b\udce4d.txt', 'foo.txt']

>>>

If you have code that manipulates filenames or even passes them to functions such as
open(), everything works normally. It’s only in situations where you want to output the
filename that you run into trouble (e.g., printing it to the screen, logging it, etc.). Specif-
ically, if you tried to print the preceding listing, your program will crash:

>>> for name in files:
print(name)

spam.py
File "<stdin>", line 2, in <module>
UnicodeEncodeError: 'utf-8' codec can't encode character '\udce4' in

position 1: surrogates not allowed
>>>

The reason it crashes is that the character \udce4 is technically invalid Unicode. It’s
actually the second half of a two-character combination known as a surrogate pair.
However, since the first half is missing, it's invalid Unicode. Thus, the only way to pro-
duce successful output is to take corrective action when a bad filename is encountered.
For example, changing the code to the recipe produces the following:

>>> for name in files:
try:
print(name)
except UnicodeEncodeError:
print(bad_filename(name))
spam.py
b\udce4d. txt

foo.txt
>>>

The choice of what to do for the bad_filename() function is largely up to you. Another
option is to re-encode the value in some way, like this:

def bad_filename(filename):
temp = filename.encode(sys.getfilesystemencoding(), errors='surrogateescape')
return temp.decode('latin-1')

Using this version produces the following output:

>>> for name in files:
try:
print(name)
except UnicodeEncodeError:
print(bad_filename(name))

162 | Chapter5:Filesand /0

spam.py
bad. txt
foo.txt

>>>
This recipe will likely be ignored by most readers. However, if you're writing mission-
critical scripts that need to work reliably with filenames and the filesystem, it’s something

to think about. Otherwise, you might find yourself called back into the office over the
weekend to debug a seemingly inscrutable error.

5.16. Adding or Changing the Encoding of an Already
Open File

Problem

You want to add or change the Unicode encoding of an already open file without closing
it first.

Solution

If you want to add Unicode encoding/decoding to an already existing file object that’s
opened in binary mode, wrap it with an 1o0.TextIOWrapper() object. For example:

import urllib.request
import io

u = urllib.request.urlopen('http://www.python.org")
f = 1o.TextIOWrapper(u,encoding="'utf-8")
text = f.read()

If you want to change the encoding of an already open text-mode file, use its detach()
method to remove the existing text encoding layer before replacing it with a new one.
Here is an example of changing the encoding on sys.stdout:

>>> import sys

>>> sys.stdout.encoding

'UTF-8'

>>> sys.stdout = io.TextIOWrapper(sys.stdout.detach(), encoding='latin-1")
>>> sys.stdout.encoding

'latin-1'

>>>

Doing this might break the output of your terminal. It's only meant to illustrate.

Discussion

The I/O system is built as a series of layers. You can see the layers yourself by trying this
simple example involving a text file:

5.16. Adding or Changing the Encoding of an Already Open File | 163

>>> f = open('sample.txt','w")

>>> f

<_10.TextIOWrapper name='sample.txt' mode='w' encoding='UTF-8'>
>>> f.buffer

<_io.BufferedWriter name='sample.txt'>

>>> f.buffer.raw

<_10.FileIO name='sample.txt' mode='wb'>

>>>

In this example, 10.TextIOWrapper is a text-handling layer that encodes and decodes
Unicode, 1o0.BufferedWriter is a buffered I/O layer that handles binary data, and
10.FileIOisaraw file representing the low-level file descriptor in the operating system.
Adding or changing the text encoding involves adding or changing the topmost
10.TextIOWrapper layer.

As a general rule, it’s not safe to directly manipulate the different layers by accessing the
attributes shown. For example, see what happens if you try to change the encoding using
this technique:

>>> f
<_io0.TextIOWrapper name='sample.txt' mode='w' encoding='UTF-8'>
>>> f = {o0.TextIOWrapper(f.buffer, encoding='latin-1")
>s>> f
<_10.TextIOWrapper name='sample.txt' encoding='latin-1'>
>>> f.write('Hello")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: I/0 operation on closed file.
>>>

It doesn’t work because the original value of f got destroyed and closed the underlying
file in the process.

The detach() method disconnects the topmost layer of a file and returns the next lower
layer. Afterward, the top layer will no longer be usable. For example:

>>> f = open('sample.txt', 'w')

>>> f

<_1o.TextIOWrapper name='sample.txt' mode='w' encoding='UTF-8'>
>>> b = f.detach()

>>> b

<_io.BufferedWriter name='sample.txt'>

>>> f.write('hello')

File "<stdin>", line 1, in <module>
ValueError: underlying buffer has been detached
>>>

Once detached, however, you can add a new top layer to the returned result. For example:

>>> f = {0.TextIOWrapper(b, encoding='latin-1")
>>> f

164 | Chapter5:Filesand /0

<_1o0.TextIOWrapper name='sample.txt' encoding='latin-1'>

>>>
Although changing the encoding has been shown, it is also possible to use this technique
to change the line handling, error policy, and other aspects of file handling. For example:

>>> sys.stdout = io.TextIOWrapper(sys.stdout.detach(), encoding='ascii',
e errors='xmlcharrefreplace')

>>> print('Jalape\u00fio')
Jalapeñ0

>>>

Notice how the non-ASCII character ii has been replaced by ñ in the output.

5.17. Writing Bytes to a Text File

Problem

You want to write raw bytes to a file opened in text mode.

Solution
Simply write the byte data to the files underlying buffer. For example:

>>> import sys
>>> sys.stdout.write(b'Hello\n")

File "<stdin>", line 1, in <module>
TypeError: must be str, not bytes
>>> sys.stdout.buffer.write(b'Hello\n")
Hello
5

>>>

Similarly, binary data can be read from a text file by reading from its buffer attribute
instead.

Discussion

The I/O system is built from layers. Text files are constructed by adding a Unicode
encoding/decoding layer on top of a buffered binary-mode file. The buffer attribute
simply points at this underlying file. If you access it, you'll bypass the text encoding/
decoding layer.

The example involving sys.stdout might be viewed as a special case. By default,
sys.stdout is always opened in text mode. However, if you are writing a script that
actually needs to dump binary data to standard output, you can use the technique shown
to bypass the text encoding.)

5.17. Writing Bytestoa TextFile | 165

5.18. Wrapping an Existing File Descriptor As a File Object

Problem

You have an integer file descriptor correponding to an already open I/O channel on the
operating system (e.g., file, pipe, socket, etc.), and you want to wrap a higher-level
Python file object around it.

Solution

A file descriptor is different than a normal open file in that it is simply an integer handle
assigned by the operating system to refer to some kind of system I/O channel. If you
happen to have such a file descriptor, you can wrap a Python file object around it using
the open() function. However, you simply supply the integer file descriptor as the first
argument instead of the filename. For example:

Open a low-level file descriptor
import os
fd = os.open('somefile.txt', 0os.0_WRONLY | os.O_CREAT)

Turn into a proper file

f = open(fd, 'wt')

f.write('hello world\n'")

f.close()
When the high-level file object is closed or destroyed, the underlying file descriptor will
also be closed. If this is not desired, supply the optional closefd=False argument to

open(). For example:

Create a file object, but don't close underlying fd when done
f = open(fd, 'wt', closefd=False)

Discussion

On Unix systems, this technique of wrapping a file descriptor can be a convenient means
for putting a file-like interface on an existing I/O channel that was opened in a different
way (e.g., pipes, sockets, etc.). For instance, here is an example involving sockets:

from socket import socket, AF_INET, SOCK_STREAM

def echo_client(client_sock, addr):
print('Got connection from', addr)

Make text-mode file wrappers for socket reading/writing

client_in = open(client_sock.fileno(), 'rt', encoding='latin-1',
closefd=False)

client_out = open(client_sock.fileno(), 'wt', encoding='latin-1',
closefd=False)

166 | Chapter5:Filesand /0

Echo lines back to the client using file I/0
for line in client_in:

client_out.write(line)

client_out.flush()
client_sock.close()

def echo_server(address):
sock = socket(AF_INET, SOCK_STREAM)
sock.bind(address)
sock.listen(1)
while True:
client, addr = sock.accept()
echo_client(client, addr)

It's important to emphasize that the above example is only meant to illustrate a feature
of the built-in open() function and that it only works on Unix-based systems. If you are
trying to put a file-like interface on a socket and need your code to be cross platform,
use the makefile() method of sockets instead. However, if portability is not a concern,
you’ll find that the above solution provides much better performance than using make
file().

You can also use this to make a kind of alias that allows an already open file to be used
in a slightly different way than how it was first opened. For example, here’s how you
could create a file object that allows you to emit binary data on stdout (which is normally
opened in text mode):

import sys

Create a binary-mode file for stdout

bstdout = open(sys.stdout.fileno(), 'wb', closefd=False)

bstdout.write(b'Hello World\n")
bstdout. flush()

Although it’s possible to wrap an existing file descriptor as a proper file, be aware that
not all file modes may be supported and that certain kinds of file descriptors may have
funny side effects (especially with respect to error handling, end-of-file conditions, etc.).
The behavior can also vary according to operating system. In particular, none of the
examples are likely to work on non-Unix systems. The bottom line is that you'll need
to thoroughly test your implementation to make sure it works as expected.

5.19. Making Temporary Files and Directories

Problem

You need to create a temporary file or directory for use when your program executes.
Afterward, you possibly want the file or directory to be destroyed.

5.19. Making Temporary Files and Directories | 167

Solution

The tempfile module has a variety of functions for performing this task. To make an
unnamed temporary file, use tempfile.TemporaryFile:

from tempfile import TemporaryFile

with TemporaryFile('w+t') as f:
Read/write to the file
f.write('Hello World\n')
f.write('Testing\n')

Seek back to beginning and read the data
f.seek(0)
data = f.read()

Temporary file is destroyed
Or, if you prefer, you can also use the file like this:

f = TemporaryFile('w+t")
Use the temporary file

f.close()

File is destroyed
The first argument to TemporaryFile() is the file mode, which is usually w+t for text
and w+b for binary. This mode simultaneously supports reading and writing, which is
useful here since closing the file to change modes would actually destroy it. Temporary

File() additionally accepts the same arguments as the built-in open() function. For
example:

with TemporaryFile('w+t', encoding='utf-8', errors='ignore') as f:

On most Unix systems, the file created by TemporaryFile() is unnamed and won’t even
have a directory entry. If you want to relax this constraint, use NamedTemporary
File() instead. For example:

from tempfile import NamedTemporaryFile

with NamedTemporaryFile('w+t') as f:
print('filename is:', f.name)

File automatically destroyed

Here, the f. name attribute of the opened file contains the filename of the temporary file.
This can be useful if it needs to be given to some other code that needs to open the file.
As with TemporaryFile(), the resulting file is automatically deleted when it’s closed. If
you don’t want this, supply a delete=False keyword argument. For example:

168 | Chapter5:Filesand /0

with NamedTemporaryFile('w+t', delete=False) as f:
print('filename is:', f.name)

To make a temporary directory, use tempfile.TemporaryDirectory(). For example:

from tempfile import TemporaryDirectory
with TemporaryDirectory() as dirname:
print('dirname is:', dirname)
Use the directory

Directory and all contents destroyed

Discussion

The TemporaryFile(),NamedTemporaryFile(),and TemporaryDirectory() functions
are probably the most convenient way to work with temporary files and directories,
because they automatically handle all of the steps of creation and subsequent cleanup.
At a lower level, you can also use the mkstemp() and mkdtemp() to create temporary
files and directories. For example:

>>> import tempfile

>>> tempfile.mkstemp()

(3, '/var/folders/7W/7WZ15sfZEFOpLjrEBIUMWE+++TI/-Tmp-/tmp7fefhv')
>>> tempfile.mkdtemp()

' Jvar/folders/7W/7WZ15sfZEFOpljrEBIUMWE+++TI/-Tmp-/tmp5Swvcve'

>>>
However, these functions don't really take care of further management. For example,

the mkstemp() function simply returns a raw OS file descriptor and leaves it up to you
to turn it into a proper file. Similarly, it’s up to you to clean up the files if you want.

Normally, temporary files are created in the system’s default location, such
as /var/tmp or similar. To find out the actual location, use the tempfile.gettemp
dir() function. For example:

>>> tempfile.gettempdir()
' /var/folders/7W/7WZ15sfZEFOpLjrEBIUMWE+++TI/-Tmp-"'

>>>
All of the temporary-file-related functions allow you to override this directory as well
as the naming conventions using the prefix, suffix, and dir keyword arguments. For
example:

>>> f = NamedTemporaryFile(prefix="'mytemp', suffix='.txt', dir='/tmp')

>>> f.name

' /tmp/mytemp8ee899. txt'

>>>
Last, but not least, to the extent possible, the tempfile() module creates temporary
files in the most secure manner possible. This includes only giving access permission

5.19. Making Temporary Files and Directories | 169

to the current user and taking steps to avoid race conditions in file creation. Be aware
that there can be differences between platforms. Thus, you should make sure to check
the official documentation for the finer points.

5.20. Communicating with Serial Ports

Problem

You want to read and write data over a serial port, typically to interact with some kind
of hardware device (e.g., a robot or sensor).

Solution

Although you can probably do this directly using Python’s built-in I/O primitives, your
best bet for serial communication is to use the pySerial package. Getting started with
the package is very easy. You simply open up a serial port using code like this:

import serial
ser = serial.Serial('/dev/tty.usbmodem641', # Device name varies
baudrate=9600,
bytesize=8,
parity="N",
stopbits=1)
The device name will vary according to the kind of device and operating system. For
instance, on Windows, you can use a device of 0, 1, and so on, to open up the commu-
nication ports such as “COMO0” and “COM1.” Once open, you can read and write data

using read(), readline(), and write() calls. For example:

ser.write(b'Gl X50 Y50\r\n')

resp = ser.readline()
For the most part, simple serial communication should be pretty simple from this point
forward.

Discussion

Although simple on the surface, serial communication can sometimes get rather messy.
One reason you should use a package such as pySerial is that it provides support for
advanced features (e.g., timeouts, control flow, buffer flushing, handshaking, etc.). For
instance, if you want to enable RTS-CTS handshaking, you simply provide a
rtscts=True argument to Serial(). The provided documentation is excellent, so
there’s little benefit to paraphrasing it here.

Keep in mind that all I/O involving serial ports is binary. Thus, make sure you write
your code to use bytes instead of text (or perform proper text encoding/decoding as

170 | Chapter5:Filesand /0

http://docs.python.org/3/library/tempfile.html
http://pyserial.sourceforge.net

needed). The struct module may also be useful should you need to create binary-coded
commands or packets.

5.21. Serializing Python Objects

Problem

You need to serialize a Python object into a byte stream so that you can do things such
as save it to a file, store it in a database, or transmit it over a network connection.

Solution

The most common approach for serializing data is to use the pickle module. To dump
an object to a file, you do this:

import pickle

data = ... # Some Python object
f = open('somefile', 'wb')
pickle.dump(data, f)

To dump an object to a string, use pickle.dumps():
s = pickle.dumps(data)

To re-create an object from a byte stream, use either the pickle.load() or pick
le.loads() functions. For example:

Restore from a file
f = open('somefile', 'rb')
data = pickle.load(f)

Restore from a string
data = pickle.loads(s)

Discussion

For most programs, usage of the dump() and load () functionisall you need to effectively
use pickle. It simply works with most Python data types and instances of user-defined
classes. If youre working with any kind of library that lets you do things such as save/
restore Python objects in databases or transmit objects over the network, there’s a pretty
good chance that pickle is being used.

pickle is a Python-specific self-describing data encoding. By self-describing, the seri-
alized data contains information related to the start and end of each object as well as
information about its type. Thus, you don’t need to worry about defining records—it
simply works. For example, if working with multiple objects, you can do this:

5.21. Serializing Python Objects | 171

>>> import pickle

>>> f = open('somedata', 'wb')

>>> pickle.dump([1, 2, 3, 4], f)

>>> pickle.dump('hello', f)

>>> pickle.dump({'Apple', 'Pear', 'Banana'}, f)
>>> f.close()

>>> f = open('somedata', 'rb')

>>> pickle.load(f)

[1, 2, 3, 4]
>>> pickle.load(f)
'hello’

>>> pickle.load(f)

{'Apple', 'Pear', 'Banana'}

>>>
You can pickle functions, classes, and instances, but the resulting data only encodes
name references to the associated code objects. For example:

>>> import math

>>> import pickle.

>>> pilckle.dumps(math.cos)
b'\x80\x03cmath\ncos\nq\x00. "'

>>>

When the data is unpickled, it is assumed that all of the required source is available.
Modules, classes, and functions will automatically be imported as needed. For applica-
tions where Python data is being shared between interpreters on different machines,
this is a potential maintenance issue, as all machines must have access to the same source
code.

pickle.load() should never be used on untrusted data. As a side effect
“’@ ofloading, pickle will automaticallyload modules and make instances.

However, an evildoer who knows how pickle works can create “mal-
formed” data that causes Python to execute arbitrary system com-
mands. Thus, it’s essential that pickle only be used internally with in-
terpreters that have some ability to authenticate one another.

Certain kinds of objects can’t be pickled. These are typically objects that involve some
sort of external system state, such as open files, open network connections, threads,
processes, stack frames, and so forth. User-defined classes can sometimes work around
these limitations by providing __getstate__() and __setstate__() methods. If de-
fined, pickle.dump() will call __getstate__() to get an object that can be pickled.
Similarly, __setstate__() will be invoked on unpickling. To illustrate what’s possible,
here is a class that internally defines a thread but can still be pickled/unpickled:

countdown.py
import time
import threading

172 | Chapter5:Filesand /0

class Countdown:
def __init__(self, n):
self.n =n
self.thr = threading.Thread(target=self.run)
self.thr.daemon = True
self.thr.start()

def run(self):
while self.n > 0:
print('T-minus', self.n)
self.n -= 1
time.sleep(5)

def _ getstate__ (self):
return self.n

def __ setstate__(self, n):
self.__init__(n)

Try the following experiment involving pickling:

>>> import countdown

>>> ¢ = countdown.Countdown(30)
>>> T-minus 30

T-minus 29

T-minus 28

>>> # After a few moments

>>> f = open('cstate.p', 'wb')
>>> import pickle

>>> pickle.dump(c, f)

>>> f.close()

Now quit Python and try this after restart:

>>> f = open('cstate.p', 'rb")

>>> pickle.load(f)

countdown.Countdown object at 0x10069e2d0>
T-minus 19

T-minus 18

You should see the thread magically spring to life again, picking up where it left off when
you first pickled it.

pickle is not a particularly efficient encoding for large data structures such as binary
arrays created by libraries like the array module or numpy. If youre moving large
amounts of array data around, you may be better off simply saving bulk array data in a
file or using a more standardized encoding, such as HDF5 (supported by third-party
libraries).

5.21. Serializing Python Objects | 173

Because of its Python-specific nature and attachment to source code, you probably
shouldn’t use pickle as a format for long-term storage. For example, if the source code
changes, all of your stored data might break and become unreadable. Frankly, for storing
data in databases and archival storage, you're probably better off using a more standard
data encoding, such as XML, CSV, or JSON. These encodings are more standardized,
supported by many different languages, and more likely to be better adapted to changes
in your source code.

Last, but not least, be aware that pickle has a huge variety of options and tricky corner
cases. For the most common uses, you don’t need to worry about them, but a look at
the official documentation should be required if you're going to build a signficant ap-
plication that uses pickle for serialization.

174 | Chapter5:Filesand /0

http://docs.python.org/3/library/pickle.html

CHAPTER 6
Data Encoding and Processing

The main focus of this chapter is using Python to process data presented in different
kinds of common encodings, such as CSV files, JSON, XML, and binary packed records.
Unlike the chapter on data structures, this chapter is not focused on specific algorithms,
but instead on the problem of getting data in and out of a program.

6.1. Reading and Writing CSV Data

Problem

You want to read or write data encoded as a CSV file.

Solution

For most kinds of CSV data, use the csv library. For example, suppose you have some
stock market data in a file named stocks.csv like this:

Symbol,Price,Date,Time,Change,Volume
"AA",39.48,"6/11/2007","9:36am",-0.18,181800
"AIG",71.38,"6/11/2007","9:36am",-0.15,195500
"AXP",62.58,"6/11/2007","9:36am",-0.46,935000
"BA",98.31,"6/11/2007","9:36am",+0.12,104800
"C",53.08,"6/11/2007","9:36am",-0.25,360900
"CAT",78.29,"6/11/2007","9:36am",-0.23,225400

Here’s how you would read the data as a sequence of tuples:

import csv

with open('stocks.csv') as f:
f_csv = csv.reader(f)
headers = next(f_csv)
for row in f_csv:

175

Process row

In the preceding code, row will be a tuple. Thus, to access certain fields, you will need
to use indexing, such as row[0] (Symbol) and row[4] (Change).

Since such indexing can often be confusing, this is one place where you might want to
consider the use of named tuples. For example:

from collections import namedtuple
with open('stock.csv') as f:
f_csv = csv.reader(f)
headings = next(f_csv)
Row = namedtuple('Row', headings)
for r in f_csv:
row = Row(*r)
Process row

This would allow you to use the column headers such as row.Symbol and row.Change
instead of indices. It should be noted that this only works if the column headers are valid
Python identifiers. If not, you might have to massage the initial headings (e.g., replacing
nonidentifier characters with underscores or similar).

Another alternative is to read the data as a sequence of dictionaries instead. To do that,
use this code:

import csv
with open('stocks.csv') as f:
f_csv = csv.DictReader(f)
for row in f_csv:
process row

In this version, you would access the elements of each row using the row headers. For
example, row['Symbol'] or row['Change'].

To write CSV data, you also use the csv module but create a writer object. For example:

headers = ['Symbol','Price','Date','Time', 'Change', 'Volume']

rows = [('AA', 39.48, '6/11/2007', '9:36am', -0.18, 181800),
('AIG', 71.38, '6/11/2007', '9:36am', -0.15, 195500),
('AXP', 62.58, '6/11/2007', '9:36am', -0.46, 935000),
1

with open('stocks.csv','w') as f:
f_csv = csv.writer(f)
f_csv.writerow(headers)
f_csv.writerows(rows)

If you have the data as a sequence of dictionaries, do this:

176 | Chapter 6: Data Encoding and Processing

headers = ['Symbol', 'Price', 'Date', 'Time', 'Change', 'Volume']
rows = [{'Symbol':'AA', 'Price':39.48, 'Date':'6/11/2007',
'Time':'9:36am', 'Change':-0.18, 'Volume':181800},
{'Symbol':'AIG', 'Price': 71.38, 'Date':'6/11/2007',
'Time':'9:36am', 'Change':-0.15, 'Volume': 195500},
{'Symbol':'AXP', 'Price': 62.58, 'Date':'6/11/2007',
'Time':'9:36am', 'Change':-0.46, 'Volume': 935000},
1

with open('stocks.csv','w') as f:
f_csv = csv.DictWriter(f, headers)
f_csv.writeheader()
f_csv.writerows(rows)

Discussion

You should almost always prefer the use of the csv module over manually trying to split
and parse CSV data yourself. For instance, you might be inclined to just write some
code like this:

with open('stocks.csv') as f:
for line in f:
row = line.split(',")
process row

The problem with this approach is that you’ll still need to deal with some nasty details.
For example, if any of the fields are surrounded by quotes, you'll have to strip the quotes.
In addition, if a quoted field happens to contain a comma, the code will break by pro-
ducing a row with the wrong size.

By default, the csv library is programmed to understand CSV encoding rules used by
Microsoft Excel. This is probably the most common variant, and will likely give you the
best compatibility. However, if you consult the documentation for csv, you'll see a few
ways to tweak the encoding to different formats (e.g., changing the separator character,
etc.). For example, if you want to read tab-delimited data instead, use this:

Example of reading tab-separated values
with open('stock.tsv') as f:
f_tsv = csv.reader(f, delimiter="\t')
for row in f_tsv:
Process row

If youre reading CSV data and converting it into named tuples, you need to be a little
careful with validating column headers. For example, a CSV file could have a header
line containing nonvalid identifier characters like this:

Street Address,Num-Premises,Latitude,Longitude
5412 N CLARK,10,41.980262,-87.668452

6.1. Reading and Writing (SV Data | 177

This will actually cause the creation of a namedtuple to fail with a ValueError exception.
To work around this, you might have to scrub the headers first. For instance, carrying
a regex substitution on nonvalid identifier characters like this:

import re
with open('stock.csv') as f:
f_csv = csv.reader(f)
headers = [re.sub('[?a-zA-Z_]', '_', h) for h in next(f_csv)]
Row = namedtuple('Row', headers)
for r in f_csv:
row = Row(*r)
Process row

It’s also important to emphasize that csv does not try to interpret the data or convert it
to a type other than a string. If such conversions are important, that is something you’ll
need to do yourself. Here is one example of performing extra type conversions on CSV
data:

col_types = [str, float, str, str, float, int]
with open('stocks.csv') as f:
f_csv = csv.reader(f)
headers = next(f_csv)
for row in f_csv:
Apply conversions to the row items
row = tuple(convert(value) for convert, value in zip(col_types, row))

Alternatively, here is an example of converting selected fields of dictionaries:

print('Reading as dicts with type conversion')
field_types = [('Price', float),

('Change', float),

('Volume', int)]

with open('stocks.csv') as f:
for row in csv.DictReader(f):
row.update((key, conversion(row[key]))
for key, conversion in field_types)

print(row)
In general, you'll probably want to be a bit careful with such conversions, though. In
the real world, it's common for CSV files to have missing values, corrupted data, and
other issues that would break type conversions. So, unless your data is guaranteed to be
error free, that’s something you’ll need to consider (you might need to add suitable
exception handling).

Finally, if your goal in reading CSV data is to perform data analysis and statistics, you
might want to look at the Pandas package. Pandas includes a convenient pan
das.read_csv() function that will load CSV data into a DataFrame object. From there,

178 | Chapter 6: Data Encoding and Processing

http://pandas.pydata.org

you can generate various summary statistics, filter the data, and perform other kinds of
high-level operations. An example is given in Recipe 6.13.

6.2. Reading and Writing JSON Data

Problem

You want to read or write data encoded as JSON (JavaScript Object Notation).

Solution

The json module provides an easy way to encode and decode data in JSON. The two
main functions are json.dumps() and json.loads(), mirroring the interface used in
other serialization libraries, such as pickle. Here is how you turn a Python data struc-
ture into JSON:

import json

data = {
'name' : 'ACME',
'shares' : 100,
'price' : 542.23
}

json_str = json.dumps(data)
Here is how you turn a JSON-encoded string back into a Python data structure:
data = json.loads(json_str)

If you are working with files instead of strings, you can alternatively use json.dump()
and json.load() to encode and decode JSON data. For example:

Writing JSON data
with open('data.json', 'w') as f:
json.dump(data, f)

Reading data back
with open('data.json', 'r') as f:
data = json.load(f)

Discussion

JSON encoding supports the basic types of None, bool, int, float, and str, as well as
lists, tuples, and dictionaries containing those types. For dictionaries, keys are assumed
tobe strings (any nonstring keys in a dictionary are converted to strings when encoding).
To be compliant with the JSON specification, you should only encode Python lists and

6.2. Reading and Writing JSON Data | 179

dictionaries. Moreover, in web applications, it is standard practice for the top-level ob-
ject to be a dictionary.

The format of JSON encoding is almost identical to Python syntax except for a few
minor changes. For instance, True is mapped to true, False is mapped to false, and
None is mapped to null. Here is an example that shows what the encoding looks like:

>>> json.dumps(False)

'false'

>>>d = {'a': True,
e 'b': 'Hello',
v 'c': None}

>>> json.dumps(d)
'"{"b": "Hello", "c": null, "a": true}'
>>>

If you are trying to examine data you have decoded from JSON, it can often be hard to
ascertain its structure simply by printing it out—especially if the data contains a deep
level of nested structures or a lot of fields. To assist with this, consider using the pprint()
function in the pprint module. This will alphabetize the keys and output a dictionary
in a more sane way. Here is an example that illustrates how you would pretty print the
results of a search on Twitter:

>>> from urllib.request import urlopen
>>> import json
>>> u = urlopen('http://search.twitter.com/search.json?q=python&rpp=5")
>>> resp = json.loads(u.read().decode('utf-8'))
>>> from pprint import pprint
>>> pprint(resp)
{'completed_in': 0.074,
'max_1d': 264043230692245504,
'max_1id_str': '264043230692245504',
'next_page': '?page=2&max_1d=2640432306922455048&q=python&rpp=5',
'page': 1,
'query': 'python',
'refresh_url': '?since_1d=264043230692245504&q=python',
'results': [{'created_at': 'Thu, 01 Nov 2012 16:36:26 +0000',
'from_user':
3,
{'created_at': 'Thu, 01 Nov 2012 16:36:14 +0000',
'from_user':
3
{'created_at': 'Thu, 01 Nov 2012 16:36:13 +0000',
'from_user':
3,
{'created_at': 'Thu, 01 Nov 2012 16:36:07 +0000',
'from_user':
}
{'created_at': 'Thu, 01 Nov 2012 16:36:04 +0000',
'from_user':

1.,

180 | Chapter 6: Data Encoding and Processing

'results_per_page': 5,
'since_id': 0,
'since_1id_str': '0'}

>>>

Normally, JSON decoding will create dicts or lists from the supplied data. If you want
to create different kinds of objects, supply the object_pairs_hook or object_hook to
json.loads(). For example, here is how you would decode JSON data, preserving its
order in an OrderedDict:

>>> s = '{"name": "ACME", "shares": 50, "price": 490.1}'

>>> from collections import OrderedDict

>>> data = json.loads(s, object_pairs_hook=0rderedDict)

>>> data

OrderedDict([('name', 'ACME'), ('shares', 50), ('price', 490.1)])

>>>
Here is how you could turn a JSON dictionary into a Python object:

>>> class JSONObject:
def __init_ (self, d):
self.__dict__ =d

>>>

>>> data = json.loads(s, object_hook=JSONObject)
>>> data.name

'ACME'

>>> data.shares

50

>>> data.price

490.1

In this last example, the dictionary created by decoding the JSON data is passed as a

single argument to __init__(). From there, you are free to use it as you will, such as
using it directly as the instance dictionary of the object.

There are a few options that can be useful for encoding JSON. If you would like the
output to be nicely formatted, you can use the indent argument to json.dumps(). This
causes the output to be pretty printed in a format similar to that with the pprint()
function. For example:

>>> print(json.dumps(data))

{"price": 542.23, "name": "ACME", "shares": 100}
>>> print(json.dumps(data, indent=4))

{
"price": 542.23,
"name": "ACME",
"shares": 100

}

>>>

6.2. Reading and Writing JSONData | 181

If you want the keys to be sorted on output, used the sort_keys argument:
>>> print(json.dumps(data, sort_keys=True))
"name": "ACME", "price": 542.23, "shares": 100}
>>>

Instances are not normally serializable as JSON. For example:

>>> class Point:

v def __init__(self, x, y):
e self.x = x
v self.y =y

>>> p = Point(2, 3)
>>> json.dumps(p)

File "<stdin>", 1ine 1, in <module>

File "/usr/local/lib/python3.3/json/__init__.py", line 226, in dumps
return _default_encoder.encode(obj)

File "/usr/local/lib/python3.3/json/encoder.py", line 187, in encode
chunks = self.iterencode(o, _one_shot=True)

File "/usr/local/lib/python3.3/json/encoder.py", line 245, in iterencode
return _iterencode(o, 0)

File "/usr/local/lib/python3.3/json/encoder.py", line 169, in default
raise TypeError(repr(o) + " is not JSON serializable")

TypeError: <__mailn__.Point object at 0x1006f2650> is not JSON serializable

>>>

If you want to serialize instances, you can supply a function that takes an instance as
input and returns a dictionary that can be serialized. For example:

def serialize_1instance(obj):
d ={ '_ classname__' : type(obj).__name__ }
d.update(vars(obj))
return d

If you want to get an instance back, you could write code like this:

Dictionary mapping names to known classes
classes = {
'"Point' : Point

}

def unserialize_object(d):
clsname = d.pop('__classname
if clsname:
cls = classes[clsname]
obj = cls.__new__(cls) # Make instance without calling __init__
for key, value in d.items():
setattr(obj, key, value)
return obj

, None)

else:
return d

182 | Chapter 6: Data Encoding and Processing

Here is an example of how these functions are used:

>>> p = Point(2,3)

>>> s = json.dumps(p, default=serialize_instance)
>>> S

'{"__classname__": "Point", "y": 3, "x": 2}'

>>> a = json.loads(s, object_hook=unserialize_object)
>>> a

<__mailn__.Point object at 0x1017577d0>

>>> a.X

2

>>> a.y

3

>>>

The json module has a variety of other options for controlling the low-level interpre-
tation of numbers, special values such as NaN, and more. Consult the documentation
for further details.

6.3. Parsing Simple XML Data

Problem

You would like to extract data from a simple XML document.

Solution

The xml.etree.ElementTree module can be used to extract data from simple XML
documents. To illustrate, suppose you want to parse and make a summary of the RSS
feed on Planet Python. Here is a script that will do it:

from urllib.request import urlopen
from xml.etree.ElementTree import parse

Download the RSS feed and parse it
u = urlopen('http://planet.python.org/rss20.xml")
doc = parse(u)

Extract and output tags of interest
for item in doc.iterfind('channel/item'):
title = item.findtext('title')
date = item.findtext('pubDate')
link = item.findtext('link")

print(title)
print(date)
print(link)
print()

6.3. Parsing Simple XML Data | 183

http://docs.python.org/3/library/json.html
http://planet.python.org

If you run the preceding script, the output looks similar to the following:

Obviously, if you want to do more processing, you need to replace the print() state-

Steve Holden: Python for Data Analysis
Mon, 19 Nov 2012 02:13:51 +0000
http://holdenweb.blogspot.com/2012/11/python-for-data-analysis.html

Vasudev Ram: The Python Data model (for v2 and v3)
Sun, 18 Nov 2012 22:06:47 +0000
http://jugad2.blogspot.com/2012/11/the-python-data-model.html

Python Diary: Been playing around with Object Databases
Sun, 18 Nov 2012 20:40:29 +0000
http://www.pythondiary.com/blog/Nov.18,2012/been-...-object-databases.html

Vasudev Ram: Wakari, Scientific Python in the cloud
Sun, 18 Nov 2012 20:19:41 +0000
http://jugad2.blogspot.com/2012/11/wakari-scientific-python-in-cloud.html

Jesse Jiryu Davis: Toro: synchronization primitives for Tornado coroutines
Sun, 18 Nov 2012 20:17:49 +0000
http://feedproxy.google.com/~r/EmptysquarePython/~3/_D0ZT2KdohQ/

ments with something more interesting.

Discussion

Working with data encoded as XML is commonplace in many applications. Not only is
XML widely used as a format for exchanging data on the Internet, it is a common format
for storing application data (e.g., word processing, music libraries, etc.). The discussion

that follows already assumes the reader is familiar with XML basics.

In many cases, when XML is simply being used to store data, the document structure
is compact and straightforward. For example, the RSS feed from the example looks

similar to the following:

<?xml version="1.0"?>
<rss version="2.0" xmlns:dc="http://purl.org/dc/elements/1.1/">
<channel>
<title>Planet Python</title>
<link>http://planet.python.org/</1link>
<language>en</language>
<description>Planet Python - http://planet.python.org/</description>
<item>
<title>Steve Holden: Python for Data Analysis</title>
<guid>http://holdenweb.blogspot.com/...-data-analysis.html</guid>
<link>http://holdenweb.blogspot.com/...-data-analysis.html</1link>
<description>...</description>
<pubDate>Mon, 19 Nov 2012 02:13:51 +0000</pubDate>
</item>
<item>

184

Chapter 6: Data Encoding and Processing

<title>Vasudev Ram: The Python Data model (for v2 and v3)</title>
<guid>http://jugad2.blogspot.com/...-data-model.html</quid>
<link>http://jugad2.blogspot.com/...-data-model.html</1link>
<description>...</description>
<pubDate>Sun, 18 Nov 2012 22:06:47 +0000</pubDate>
</item>

<item>
<title>Python Diary: Been playing around with Object Databases</title>
<guid>http://www.pythondiary.com/...-object-databases.html</quid>
<link>http://www.pythondiary.com/...-object-databases.html</1link>
<description>...</description>
<pubDate>Sun, 18 Nov 2012 20:40:29 +0000</pubDate>

</item>

</channel>

</rss>
The xml.etree.ElementTree.parse() function parses the entire XML document into
a document object. From there, you use methods such as find(), iterfind(), and
findtext() to search for specific XML elements. The arguments to these functions are
the names of a specific tag, such as channel/item or title.

When specifying tags, you need to take the overall document structure into account.
Each find operation takes place relative to a starting element. Likewise, the tagname that
you supply to each operation is also relative to the start. In the example, the call to
doc.iterfind('channel/item') looks for all “item” elements under a “channel” ele-
ment. doc represents the top of the document (the top-level “rss” element). The later
calls to item.findtext() take place relative to the found “item” elements.

Each element represented by the ElementTree module has a few essential attributes and
methods that are useful when parsing. The tag attribute contains the name of the tag,
the text attribute contains enclosed text, and the get() method can be used to extract
attributes (if any). For example:

>>> doc
<xml.etree.ElementTree.ElementTree object at 0x101339510>
>>> e = doc.find('channel/title")
>>> e

<Element 'title' at 0x10135b310>
>>> e.tag

'title'

>>> e.text

'Planet Python'

>>> e.get('some_attribute')

>>>

It should be noted that xml.etree.ElementTree is not the only option for XML parsing.
For more advanced applications, you might consider 1xml. It uses the same program-
ming interface as ElementTree, so the example shown in this recipe works in the same

6.3. Parsing Simple XML Data | 185

http://pypi.python.org/pypi/lxml

manner. You simply need to change the first import to from lxml.etree import
parse. lxml provides the benefit of being fully compliant with XML standards. It is also
extremely fast, and provides support for features such as validation, XSLT, and XPath.

6.4. Parsing Huge XML Files Incrementally

Problem

You need to extract data from a huge XML document using as little memory as possible.

Solution

Any time you are faced with the problem of incremental data processing, you should
think of iterators and generators. Here is a simple function that can be used to incre-
mentally process huge XML files using a very small memory footprint:

from xml.etree.ElementTree import iterparse

def parse_and_remove(filename, path):
path_parts = path.split('/")
doc = iterparse(filename, ('start', 'end'))
Skip the root element
next(doc)

tag_stack = []
elem_stack = []
for event, elem in doc:
if event == 'start':
tag_stack.append(elem.tag)
elem_stack.append(elem)
elif event == 'end':
if tag_stack == path_parts:
yield elem
elem_stack[-2].remove(elem)
try:
tag_stack.pop()
elem_stack.pop()
except IndexError:
pass

To test the function, you now need to find a large XML file to work with. You can often
find such files on government and open data websites. For example, you can download
Chicago’s pothole database as XML. At the time of this writing, the downloaded file
consists of more than 100,000 rows of data, which are encoded like this:

<response>
<row>
<row ...>
<creation_date>2012-11-18T00:00:00</creation_date>

186 | Chapter 6: Data Encoding and Processing

http://bit.ly/YQh2Oh

<status>Completed</status>
<completion_date>2012-11-18T00:00:00</completion_date>
<service_request_number>12-01906549</service_request_number>
<type_of_service_request>Pot Hole in Street</type_of_service_request>
<current_activity>Final Outcome</current_activity>

<most_recent_action>CDOT Street Cut ... Outcome</most_recent_action>
<street_address>4714 S TALMAN AVE</street_address>
<zip>60632</zip>

<x_coordinate>1159494.68618856</x_coordinate>
<y_coordinate>1873313.83503384</y_coordinate>
<ward>14</ward>
<police_district>9</police_district>
<community_area>58</community_area>
<latitude>41.808090232127896</latitude>
<longitude>-87.69053684711305</longitude>
<location latitude="41.808090232127896"
longitude="-87.69053684711305" />

</row>

<row ...>
<creation_date>2012-11-18T00:00:00</creation_date>
<status>Completed</status>
<completion_date>2012-11-18T00:00:00</completion_date>
<service_request_number>12-01906695</service_request_number>
<type_of_service_request>Pot Hole in Street</type_of_service_request>
<current_activity>Final Outcome</current_activity>

<most_recent_action>CDOT Street Cut ... Outcome</most_recent_action>
<street_address>3510 W NORTH AVE</street_address>
<zip>60647</zip>

<x_coordinate>1152732.14127696</x_coordinate>
<y_coordinate>1910409.38979075</y_coordinate>
<ward>26</ward>
<police_district>14</police_district>
<community_area>23</community_area>
<latitude>41.91002084292946</latitude>
<longitude>-87.71435952353961</longitude>
<location latitude="41.91002084292946"
longitude="-87.71435952353961" />
</row>
</row>
</response>

Suppose you want to write a script that ranks ZIP codes by the number of pothole
reports. To do it, you could write code like this:

from xml.etree.ElementTree import parse
from collections import Counter

potholes_by_zip = Counter()
doc = parse('potholes.xml')

for pothole in doc.iterfind('row/row'):
potholes_by_zip[pothole.findtext('zip')] += 1

6.4. Parsing Huge XML Files Incrementally | 187

for zipcode, num in potholes_by_zip.most_common():
print(zipcode, num)

The only problem with this script is that it reads and parses the entire XML file into
memory. On our machine, it takes about 450 MB of memory to run. Using this recipe’s
code, the program changes only slightly:

from collections import Counter
potholes_by zip = Counter()

data = parse_and_remove('potholes.xml', 'row/row")
for pothole in data:
potholes_by zip[pothole.findtext('zip')] += 1

for zipcode, num in potholes_by_zip.most_common():
print(zipcode, num)

This version of code runs with a memory footprint of only 7 MB—a huge savings!

Discussion

This recipe relies on two core features of the ElementTree module. First, the iter
parse() method allows incremental processing of XML documents. To use it, you sup-
ply the filename along with an event list consisting of one or more of the following:
start,end, start-ns,and end-ns. The iterator created by iterparse() produces tuples
of the form (event, elem), where event is one of the listed events and elem is the
resulting XML element. For example:

>>> data = iterparse('potholes.xml',('start','end"))
>>> next(data)

('start', <Element 'response' at 0x100771d60>)

>>> next(data)

('start', <Element 'row' at 0x100771e68>)

>>> next(data)

('start', <Element 'row' at 0x100771fc8>)

>>> next(data)

('start', <Element 'creation_date' at 0x100771f18>)
>>> next(data)

('end', <Element 'creation_date' at 0x100771f18>)
>>> next(data)

('start', <Element 'status' at 0x1006a7f18>)

>>> next(data)

('end', <Element 'status' at 0x1006a7f18>)

>>>

start events are created when an element is first created but not yet populated with any

other data (e.g., child elements). end events are created when an element is completed.

Although not shown in this recipe, start-ns and end-ns events are used to handle XML
namespace declarations.

188 | Chapter 6: Data Encoding and Processing

In this recipe, the start and end events are used to manage stacks of elements and tags.
The stacks represent the current hierarchical structure of the document as it’s being
parsed, and are also used to determine if an element matches the requested path given
to the parse_and_remove() function. If a match is made, yield is used to emit it back
to the caller.

The following statement after the yield is the core feature of ElementTree that makes
this recipe save memory:

elem_stack[-2].remove(elem)

This statement causes the previously yielded element to be removed from its parent.
Assuming that no references are left to it anywhere else, the element is destroyed and
memory reclaimed.

The end effect of the iterative parse and the removal of nodes is a highly efficient in-
cremental sweep over the document. At no point is a complete document tree ever
constructed. Yet, it is still possible to write code that processes the XML data in a
straightforward manner.

The primary downside to this recipe is its runtime performance. When tested, the ver-
sion of code that reads the entire document into memory first runs approximately twice
as fast as the version that processes it incrementally. However, it requires more than 60
times as much memory. So, if memory use is a greater concern, the incremental version
is a big win.

6.5. Turning a Dictionary into XML

Problem
You want to take the data in a Python dictionary and turn it into XML.

Solution

Although the xml.etree.ElementTree library is commonly used for parsing, it can also
be used to create XML documents. For example, consider this function:

from xml.etree.ElementTree import Element

def dict_to_xml(tag, d):

rr

Turn a simple dict of key/value pairs into XML
elem = Element(tag)
for key, val in d.items():

child = Element(key)

child.text = str(val)

6.5. Turning a Dictionary into XML | 189

elem.append(child)
return elem

Here is an example:

>>> s = { 'name': 'GOOG', 'shares': 100, 'price':490.1 }
>>> e = dict_to_xml('stock', s)

>>> e

<Element 'stock' at 0x1004b64c8>

>>>

The result of this conversion is an Element instance. For I/0, it is easy to convert this
to a byte string using the tostring() function in xml.etree.ElementTree. For
example:

>>> from xml.etree.ElementTree import tostring

>>> tostring(e)
b'<stock><price>490.1</price><shares>100</shares><name>G00G</name></stock>"
>>>

If you want to attach attributes to an element, use its set() method:

>>> e.set('_1d','1234")

>>> tostring(e)

b'<stock _1d="1234"><price>490.1</price><shares>100</shares><name>G00G</name>
</stock>'

>>>

If the order of the elements matters, consider making an OrderedDict instead of a
normal dictionary. See Recipe 1.7.

Discussion

When creating XML, you might be inclined to just make strings instead. For example:

def dict_to_xml_str(tag, d):

o

Turn a simple dict of key/value pairs into XML

parts = ['<{}>'.format(tag)]

for key, val in d.items():
parts.append('<{0}>{1}</{0}>".format(key,val))

parts.append('</{}>'.format(tag))

return ''.join(parts)

The problem is that you're going to make a real mess for yourself if you try to do things

manually. For example, what happens if the dictionary values contain special characters
like this?

>>> d = { 'name' : '<spam>' }

>>> # String creation
>>> dict_to_xml_str('item',d)

190 | Chapter 6: Data Encoding and Processing

'<item><name><spam></name></item>'

>>> # Proper XML creation

>>> e = dict_to_xml('item',d)

>>> tostring(e)
b'<item><name><spam></name></item>"'
>>>

Notice how in the latter example, the characters < and > got replaced with &1t ; and > ;.

Just for reference, if you ever need to manually escape or unescape such characters, you
can use the escape() and unescape() functions in xml.sax.saxutils. For example:

>>> from xml.sax.saxutils import escape, unescape

>>> escape('<spam>"')

'≪spam> "’

>>> unescape(_)

'<spam>'

>>>
Aside from creating correct output, the other reason why its a good idea to create
Element instances instead of strings is that they can be more easily combined together
to make a larger document. The resulting Element instances can also be processed in
various ways without ever having to worry about parsing the XML text. Essentially, you
can do all of the processing of the data in a more high-level form and then output it as
a string at the very end.

6.6. Parsing, Modifying, and Rewriting XML

Problem

You want to read an XML document, make changes to it, and then write it back out as
XML.

Solution

The xml.etree.ElementTree module makes it easy to perform such tasks. Essentially,
you start out by parsing the document in the usual way. For example, suppose you have
a document named pred.xml that looks like this:

<?xml version="1.0"?>
<stop>
<1d>14791</1d>
<nm>Clark & Balmoral</nm>
<sri>
<rt>22</rt>
<d>North Bound</d>
<dd>North Bound</dd>
<[sri>

6.6. Parsing, Modifying, and Rewriting XML | 191

<cr>22</cr>

<pre>
<pt>5 MIN</pt>
<fd>Howard</fd>
<v>1378</v>
<rn>22</rn>

</pre>

<pre>
<pt>15 MIN</pt>
<fd>Howard</fd>
<v>1867</v>
<rn>22</rn>

</pre>

</stop>

Here is an example of using ElementTree to read it and make changes to the structure:

>>> from xml.etree.ElementTree import parse, Element
>>> doc = parse('pred.xml')

>>> root = doc.getroot()

>>> root

<Element 'stop' at 0x100770cbO>

>>> # Remove a few elements
>>> root.remove(root.find('sri'))
>>> root.remove(root.find('cr'))

>>> # Insert a new element after <nm>...</nm>
>>> root.getchildren().index(root.find('nm"))

1
>>> e = Element('spam')
>>> e.text = 'This is a test'

>>> root.insert(2, e)

>>> # Write back to a file
>>> doc.write('newpred.xml', xml_declaration=True)
>>>

The result of these operations is a new XML file that looks like this:

<?xml version='1.0"' encoding='us-ascii'?>
<stop>
<1d>14791</id>
<nm>Clark & Balmoral</nm>
<spam>This is a test</spam><pre>
<pt>5 MIN</pt>
<fd>Howard</fd>
<v>1378</v>
<rn>22</rn>
</pre>
<pre>
<pt>15 MIN</pt>
<fd>Howard</fd>

192 | Chapter 6: Data Encoding and Processing

<v>1867</v>
<rn>22</rn>
</pre>
</stop>

Discussion

Modifying the structure of an XML document is straightforward, but you must re-
member that all modifications are generally made to the parent element, treating it as
ifit were a list. For example, if you remove an element, it is removed from its immediate
parent using the parent’s remove() method. If you insert or append new elements, you
also use insert() and append() methods on the parent. Elements can also be manip-
ulated using indexing and slicing operations, such as element[1] or element[i:]].

If you need to make new elements, use the Element class, as shown in this recipe’s
solution. This is described further in Recipe 6.5.

6.7. Parsing XML Documents with Namespaces

Problem

You need to parse an XML document, but it’s using XML namespaces.

Solution
Consider a document that uses namespaces like this:

<?2xml version="1.0" encoding="utf-8"?>
<top>
<author>David Beazley</author>
<content>
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Hello World</title>
</head>
<body>
<h1>Hello World!</h1>
</body>
</html>
</content>
</top>

Ifyou parse this document and try to perform the usual queries, you'll find that it doesn’t
work so easily because everything becomes incredibly verbose:

>>> # Some queries that work
>>> doc.findtext('author')
'David Beazley'

>>> doc.find('content')

6.7. Parsing XML Documents with Namespaces | 193

<Element 'content' at 0x100776ecO>

>>> # A query involving a namespace (doesn't work)
>>> doc.find('content/html")

>>> # Works i1f fully qualified
>>> doc.find('content/{http://www.w3.0rg/1999/xhtml}html")
<Element '{http://www.w3.0rg/1999/xhtml}html' at 0x1007767e0>

>>> # Doesn't work
>>> doc.findtext('content/{http://www.w3.0rg/1999/xhtml}html/head/title")

>>> # Fully qualified

>>> doc.findtext('content/{http://www.w3.0rg/1999/xhtml}html/"
"{http://www.w3.0rg/1999/xhtml}head/{http://www.w3.0rg/1999/xhtml}title")

'Hello World'

>>>

You can often simplify matters for yourself by wrapping namespace handling up into a
utility class.

class XMLNamespaces:

def __init__ (self, **kwargs):
self.namespaces = {}
for name, uri in kwargs.items():

self.register(name, uri)

def register(self, name, uri):
self.namespaces[name] = '{'+uri+'}'

def __call__ (self, path):
return path.format_map(self.namespaces)

To use this class, you do the following:

>>> ns = XMLNamespaces(html="http://www.w3.0rg/1999/xhtml")

>>> doc.find(ns('content/{html}html"))

<Element '{http://www.w3.0rg/1999/xhtml}html' at 0x1007767e0>
>>> doc.findtext(ns('content/{html}html/{html}head/{html}title"))
'Hello World'

>>>

Discussion

Parsing XML documents that contain namespaces can be messy. The XMLNamespaces
class is really just meant to clean it up slightly by allowing you to use the shortened
namespace names in subsequent operations as opposed to fully qualified URIs.

Unfortunately, there is no mechanism in the basic ElementTree parser to get further
information about namespaces. However, you can get a bit more information about the
scope of namespace processing if you're willing to use the iterparse() function instead.
For example:

194 | Chapter 6: Data Encoding and Processing

>>> from xml.etree.ElementTree import iterparse
>>> for evt, elem in iterparse('ns2.xml', ('end', 'start-ns', 'end-ns')):
print(evt, elem)

end <Element 'author' at 0x10110del10>

start-ns ('', 'http://www.w3.0rg/1999/xhtml"')

end <Element '{http://www.w3.0rg/1999/xhtml}title' at 0x1011131b0>
end <Element '{http://www.w3.0rg/1999/xhtml}head' at 0x1011130a8>
end <Element '{http://www.w3.0rg/1999/xhtml}h1' at 0x101113310>
end <Element '{http://www.w3.0rg/1999/xhtml}body' at 0x101113260>
end <Element '{http://www.w3.0rg/1999/xhtml}html' at 0x10110df70>
end-ns None

end <Element 'content' at 0x10110de68>

end <Element 'top' at 0x10110dd60>

>>> elem # This is the topmost element

<Element 'top' at 0x10110dd66>

>>>
As a final note, if the text you are parsing makes use of namespaces in addition to other
advanced XML features, you're really better off using the lxml library instead of Ele
mentTree. For instance, Ixml provides better support for validating documents against

a DTD, more complete XPath support, and other advanced XML features. This recipe
is really just a simple fix to make parsing a little easier.

6.8. Interacting with a Relational Database

Problem

You need to select, insert, or delete rows in a relational database.

Solution

A standard way to represent rows of data in Python is as a sequence of tuples. For
example:

stocks = [
('G00G', 100, 490.1),
('AAPL', 50, 545.75),
('FB', 150, 7.45),
('HPQ', 75, 33.2),
1
Given data in this form, it is relatively straightforward to interact with a relational
database using Python’s standard database API, as described in PEP 249. The gist of the
API is that all operations on the database are carried out by SQL queries. Each row of
input or output data is represented by a tuple.

To illustrate, you can use the sqlite3 module that comes with Python. If you are using
a different database (e.g., MySql, Postgres, or ODBC), you’ll have to install a third-party

6.8. Interacting with a Relational Database | 195

http://lxml.de
http://www.python.org/dev/peps/pep-0249

module to support it. However, the underlying programming interface will be virtually
the same, if not identical.

The first step is to connect to the database. Typically, you execute a connect() function,
supplying parameters such as the name of the database, hostname, username, password,
and other details as needed. For example:

>>> import sqlite3
>>> db = sqlite3.connect('database.db")

>>>

To do anything with the data, you next create a cursor. Once you have a cursor, you can
start executing SQL queries. For example:

>>> ¢ = db.cursor()

>>> c.execute('create table portfolio (symbol text, shares integer, price real)')
<sqlite3.Cursor object at 0x10067a730>

>>> db.commit()

>>>

To insert a sequence of rows into the data, use a statement like this:

>>> c.executemany('insert into portfolio values (?,7,?)', stocks)
<sqlite3.Cursor object at 0x10067a730>

>>> db.commit()

>>>

To perform a query, use a statement such as this:

>>> for row in db.execute('select * from portfolio'):
ces print(row)

('G00G', 100, 490.1)

('AAPL', 50, 545.75)

('FB', 150, 7.45)

('HPQ', 75, 33.2)

>>>

If you want to perform queries that accept user-supplied input parameters, make sure
you escape the parameters using ? like this:

>>> min_price = 100

>>> for row in db.execute('select * from portfolio where price >= 7',
(min_price,)):

e print(row)

('GO0G', 100, 490.1)

('AAPL', 50, 545.75)

>>>

196 | Chapter 6: Data Encoding and Processing

Discussion

At a low level, interacting with a database is an extremely straightforward thing to do.
You simply form SQL statements and feed them to the underlying module to either
update the database or retrieve data. That said, there are still some tricky details you'll
need to sort out on a case-by-case basis.

One complication is the mapping of data from the database into Python types. For
entries such as dates, it is most common to use datetime instances from the date
time module, or possibly system timestamps, as used in the time module. For numerical
data, especially financial data involving decimals, numbers may be represented as Dec
imal instances from the decimal module. Unfortunately, the exact mapping varies by
database backend so you’ll have to read the associated documentation.

Another extremely critical complication concerns the formation of SQL statement
strings. You should never use Python string formatting operators (e.g., %) or the .for
mat () method to create such strings. If the values provided to such formatting operators
are derived from user input, this opens up your program to an SQL-injection attack (see
http://xkcd.com/327). The special ? wildcard in queries instructs the database backend
to use its own string substitution mechanism, which (hopefully) will do it safely.

Sadly, there is some inconsistency across database backends with respect to the wildcard.
Many modules use ? or %s, while others may use a different symbol, such as :0 or :1,
to refer to parameters. Again, you'll have to consult the documentation for the database
module youre using. The paramstyle attribute of a database module also contains in-
formation about the quoting style.

For simply pulling data in and out of a database table, using the database API is usually
simple enough. If youre doing something more complicated, it may make sense to use
a higher-level interface, such as that provided by an object-relational mapper. Libraries
such as SQLAlchemy allow database tables to be described as Python classes and for
database operations to be carried out while hiding most of the underlying SQL.

6.9. Decoding and Encoding Hexadecimal Digits

Problem

You need to decode a string of hexadecimal digits into a byte string or encode a byte
string as hex.

Solution

If you simply need to decode or encode a raw string of hex digits, use the binascii
module. For example:

6.9. Decoding and Encoding Hexadecimal Digits | 197

http://xkcd.com/327
http://www.sqlalchemy.org

>>> # Initial byte string
>>> s = b'hello’

>>> # Encode as hex

>>> import binascii

>>> h = binascii.b2a_hex(s)
>>> h

b'68656c6c6f’

>>> # Decode back to bytes
>>> binascii.a2b_hex(h)
b'hello’

>>>
Similar functionality can also be found in the base64 module. For example:

>>> import base64

>>> h = base64.bl6encode(s)
>>> h

b'68656C6C6F'

>>> base64.bl6decode(h)
b'hello’

>>>

Discussion

For the most part, converting to and from hex is straightforward using the functions
shown. The main difference between the two techniques is in case folding. The
base64.b16decode() and base64.bl6encode() functions only operate with uppercase
hexadecimal letters, whereas the functions in binascii work with either case.

It’s also important to note that the output produced by the encoding functions is always
a byte string. To coerce it to Unicode for output, you may need to add an extra decoding
step. For example:

>>> h = base64.bl6encode(s)
>>> print(h)

b'68656C6C6F'

>>> print(h.decode('ascii'))
68656C6C6F

>>>

When decoding hex digits, the bl6decode() and a2b_hex() functions accept either
bytes or unicode strings. However, those strings must only contain ASCII-encoded
hexadecimal digits.

198 | Chapter 6: Data Encoding and Processing

6.10. Decoding and Encoding Base64

Problem

You need to decode or encode binary data using Base64 encoding.

Solution

The base64 module has two functions—b64encode() and b64decode()—that do ex-
actly what you want. For example:

>>> # Some byte data
>>> s = b'hello’
>>> import base64

>>> # Encode as Base64

>>> a = base64.b64encode(s)
>>> a

b'aGVvsbG8="

>>> # Decode from Base64
>>> base64.b64decode(a)
b'hello'

>>>

Discussion

Base64 encoding is only meant to be used on byte-oriented data such as byte strings and
byte arrays. Moreover, the output of the encoding process is always a byte string. If you
are mixing Base64-encoded data with Unicode text, you may have to perform an extra
decoding step. For example:

>>> a = base64.b6dencode(s).decode('ascii')
>>> a
'aGVsbG8="

>>>

When decoding Base64, both byte strings and Unicode text strings can be supplied.
However, Unicode strings can only contain ASCII characters.

6.11. Reading and Writing Binary Arrays of Structures

Problem

You want to read or write data encoded as a binary array of uniform structures into
Python tuples.

6.10. Decoding and Encoding Base64 | 199

Solution

To work with binary data, use the struct module. Here is an example of code that writes
a list of Python tuples out to a binary file, encoding each tuple as a structure using
struct:

from struct import Struct

def write_records(records, format, f):

e

Write a sequence of tuples to a binary file of structures.
record_struct = Struct(format)
for r in records:

f.write(record_struct.pack(*r))

Example
if __pame__ == '__main__":
records = [(1, 2.3, 4.5),
(6, 7.8, 9.0),
(12, 13.4, 56.7)]

with open('data.b', 'wb') as f:
write_records(records, '<idd', f)

There are several approaches for reading this file back into a list of tuples. First, if you're
going to read the file incrementally in chunks, you can write code such as this:

from struct import Struct

def read_records(format, f):
record_struct = Struct(format)
chunks = iter(lambda: f.read(record_struct.size), b'"')
return (record_struct.unpack(chunk) for chunk in chunks)

Example
if __name__ == '__main
with open('data.b','rb') as f:
for rec in read_records('<idd', f):
Process rec

If you want to read the file entirely into a byte string with a single read and convert it
piece by piece, you can write the following:

from struct import Struct

def unpack_records(format, data):
record_struct = Struct(format)
return (record_struct.unpack_from(data, offset)
for offset in range(0, len(data), record_struct.size))

200 | Chapter6: Data Encoding and Processing

Example
if __name__ == '__main__
with open('data.b', 'rb') as f:
data = f.read()

for rec in unpack_records('<idd', data):
Process rec

In both cases, the result is an iterable that produces the tuples originally stored when
the file was created.

Discussion

For programs that must encode and decode binary data, it is common to use the struct
module. To declare a new structure, simply create an instance of Struct such as:

Little endian 32-bit integer, two double precision floats
record_struct = Struct('<idd")

Structures are always defined using a set of structure codes such as 1, d, f, and so forth
[see the Python documentation]. These codes correspond to specific binary data types
such as 32-bit integers, 64-bit floats, 32-bit floats, and so forth. The < in the first character
specifies the byte ordering. In this example, it is indicating “little endian.” Change the
character to > for big endian or ! for network byte order.

The resulting Struct instance has various attributes and methods for manipulating
structures of that type. The size attribute contains the size of the structure in bytes,
which is useful to have in I/O operations. pack() and unpack() methods are used to
pack and unpack data. For example:

>>> from struct import Struct

>>> record_struct = Struct('<idd')

>>> record_struct.size

20

>>> record_struct.pack(1l, 2.0, 3.0)
b'\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00@\x00\x00\x00\x00\x00\x00\x08@"
>>> record_struct.unpack(_)

(1, 2.0, 3.0)

>>>

Sometimes you’ll see the pack() and unpack() operations called as module-level func-
tions, as in the following:

>>> import struct

>>> struct.pack('<idd', 1, 2.0, 3.0)
b'\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00@\x00\x00\x00\x00\x00\x00\x08@"
>>> struct.unpack('<idd', _)

(1, 2.0, 3.0)

>>>

6.11. Reading and Writing Binary Arrays of Structures | 201

http://docs.python.org/3/library/struct.html

This works, but feels less elegant than creating a single Struct instance—especially if
the same structure appears in multiple places in your code. By creating a Struct in-
stance, the format code is only specified once and all of the useful operations are grouped
together nicely. This certainly makes it easier to maintain your code if you need to fiddle
with the structure code (as you only have to change it in one place).

The code for reading binary structures involves a number of interesting, yet elegant
programming idioms. In the read_records() function, iter() is being used to make
an iterator that returns fixed-sized chunks. See Recipe 5.8. This iterator repeatedly calls
a user-supplied callable (e.g., lambda: f.read(record_struct.size)) until it returns
a specified value (e.g., b), at which point iteration stops. For example:

>>> f = open('data.b', 'rb")
>>> chunks = iter(lambda: f.read(20), b'")
>>> chunks
<callable_iterator object at 0x10069e6d0>
>>> for chk in chunks:

print(chk)

b'\x01\x00\x00\x00ffffff\x02@\x00\x00\x00\x00\x00\x00\x12@"
b'\x06\x00\x00\x00333333\x1f@\x00\x00\x00\x00\x00\x00"@"
b'\x0c\x00\x00\x00\xcd\xcc\xcc\xcc\xcc\xcc*@\x9a\x99\x99\x99\x99YL@"'

>>>
One reason for creating an iterable is that it nicely allows records to be created using a

generator comprehension, as shown in the solution. If you didn’t use this approach, the
code might look like this:

def read_records(format, f):
record_struct = Struct(format)
while True:

chk = f.read(record_struct.size)
if chk == b'":
break
yield record_struct.unpack(chk)
return records

In the unpack_records() function, a different approach using the unpack_from()
method is used. unpack_from() is a useful method for extracting binary data from a
larger binary array, because it does so without making any temporary objects or memory
copies. You just give it a byte string (or any array) along with a byte offset, and it will
unpack fields directly from that location.

If you used unpack() instead of unpack_from(), you would need to modify the code to
make a lot of small slices and offset calculations. For example:

def unpack_records(format, data):
record_struct = Struct(format)
return (record_struct.unpack(data[offset:offset + record_struct.size])
for offset in range(0, len(data), record_struct.size))

202 | Chapter6: Data Encoding and Processing

In addition to being more complicated to read, this version also requires a lot more
work, as it performs various offset calculations, copies data, and makes small slice ob-
jects. If you're going to be unpacking a lot of structures from a large byte string you've
already read, unpack_from() is a more elegant approach.

Unpacking records is one place where you might want to use namedtuple objects from
the collections module. This allows you to set attribute names on the returned tuples.
For example:

from collections import namedtuple

Record = namedtuple('Record', ['kind','x','y'])

with open('data.p', 'rb') as f:
records = (Record(*r) for r in read_records('<idd', f))

for r in records:
print(r.kind, r.x, r.y)
If you're writing a program that needs to work with a large amount of binary data, you
may be better off using a library such as numpy. For example, instead of reading a binary
into a list of tuples, you could read it into a structured array, like this:

>>> import numpy as np

>>> f = open('data.b', 'rb")

>>> records = np.fromfile(f, dtype='<i,<d,<d")

>>> records

array([(1, 2.3, 4.5), (6, 7.8, 9.0), (12, 13.4, 56.7)],
dtype=[('f0', '<i4'), ('f1', '<f8'), ('f2', '<f8')])

>>> records[0]

(1, 2.3, 4.5)

>>> records[1]

(6, 7.8, 9.0)

>>>

Last, but not least, if you're faced with the task of reading binary data in some known
file format (i.e., image formats, shape files, HDF5, etc.), check to see if a Python module
already exists for it. There’s no reason to reinvent the wheel if you don’t have to.

6.12. Reading Nested and Variable-Sized Binary
Structures

Problem

You need to read complicated binary-encoded data that contains a collection of nested
and/or variable-sized records. Such data might include images, video, shapefiles, and
$0 on.

6.12. Reading Nested and Variable-Sized Binary Structures | 203

Solution

The struct module can be used to decode and encode almost any kind of binary data
structure. To illustrate the kind of data in question here, suppose you have this Python
data structure representing a collection of points that make up a series of polygons:

polys = [
[(1.0, 2.5), (3.5, 4.0), (2.5, 1.5) 1,
[(7.0, 1.2), (5.1, 3.0), (0.5, 7.5), (0.8, 9.0) 1,
[(3.4, 6.3), (1.2, 0.5), (4.6, 9.2) 1,
1

Now suppose this data was to be encoded into a binary file where the file started with
the following header:

Byte Type Description

0 int File code (0x1234, little endian)
4 double Minimum x (little endian)

12 double Minimum y (little endian)

20 double Maximum x (little endian)

28 double Maximumy (little endian)

36 int Number of polygons (little endian)

Following the header, a series of polygon records follow, each encoded as follows:

Byte Type Description
0 int Record length including length (N bytes)
4-N Points Pairs of (X,Y) coords as doubles

To write this file, you can use Python code like this:

import struct
import itertools

def write_polys(filename, polys):
Determine bounding box
flattened = list(itertools.chain(*polys))
min_x = min(x for x, y in flattened)
max_x = max(x for x, y in flattened)
min_y = min(y for x, y in flattened)
max_y = max(y for x, y in flattened)

with open(filename, 'wb') as f:
f.write(struct.pack('<iddddi',
0x1234,
min_x, min_y,
max_x, Max_y,
len(polys)))

204 | Chapter6: Data Encoding and Processing

for poly in polys:
size = len(poly) * struct.calcsize('<dd")
f.write(struct.pack('<i', size+4))
for pt in poly:
f.write(struct.pack('<dd', *pt))

Call it with our polygon data

write_polys('polys.bin', polys)
To read the resulting data back, you can write very similar looking code using the
struct.unpack() function, reversing the operations performed during writing. For
example:

import struct

def read_polys(filename):
with open(filename, 'rb') as f:
Read the header
header = f.read(40)
file_code, min_x, min_y, max_x, max_y, num_polys = \
struct.unpack('<iddddi', header)

polys = []
for n in range(num_polys):
pbytes, = struct.unpack('<il', f.read(4))
poly = []
for m in range(pbytes // 16):
pt = struct.unpack('<dd', f.read(16))
poly.append(pt)
polys.append(poly)
return polys
Although this code works, it’s also a rather messy mix of small reads, struct unpacking,
and other details. If code like this is used to process a real datafile, it can quickly become
even messier. Thus, it’s an obvious candidate for an alternative solution that might sim-

plify some of the steps and free the programmer to focus on more important matters.

In the remainder of this recipe, a rather advanced solution for interpreting binary data
will be built up in pieces. The goal will be to allow a programmer to provide a high-level
specification of the file format, and to simply have the details of reading and unpacking
all of the data worked out under the covers. As a forewarning, the code that follows may
be the most advanced example in this entire book, utilizing various object-oriented
programming and metaprogramming techniques. Be sure to carefully read the discus-
sion section as well as cross-references to other recipes.

First, when reading binary data, it is common for the file to contain headers and other
data structures. Although the struct module can unpack this data into a tuple, another
way to represent such information is through the use of a class. Here’s some code that
allows just that:

6.12. Reading Nested and Variable-Sized Binary Structures | 205

import struct

class StructField:

o

Descriptor representing a simple structure field
def __init__ (self, format, offset):
self.format = format
self.offset = offset
def _ get_ (self, instance, cls):
if instance is None:
return self

else:
r = struct.unpack_from(self.format,
instance._buffer, self.offset)
return r[0] if len(r) == 1 else r

class Structure:
def __init__ (self, bytedata):
self._buffer = memoryview(bytedata)

This code uses a descriptor to represent each structure field. Each descriptor contains
a struct-compatible format code along with a byte offset into an underlying memory
buffer.Inthe __get__() method, thestruct.unpack_from() functionisused to unpack
a value from the buffer without having to make extra slices or copies.

The Structure class just serves as a base class that accepts some byte data and stores it
as the underlying memory buffer used by the StructField descriptor. The use of a
memoryview() in this class serves a purpose that will become clear later.

Using this code, you can now define a structure as a high-level class that mirrors the
information found in the tables that described the expected file format. For example:

class PolyHeader(Structure):
file_code = StructField('<i', 0)
min_x = StructField('<d', 4)
min_y = StructField('<d', 12)
max_x = StructField('<d', 20)
max_y = StructField('<d', 28)
num_polys = StructField('<i', 36)

Here is an example of using this class to read the header from the polygon data written
earlier:

>>> f = open('polys.bin', 'rb')
>>> phead = PolyHeader(f.read(40))
>>> phead.file_code == 0x1234
True

>>> phead.min_x

0.5

>>> phead.min_y

0.5

206

| Chapter 6: Data Encoding and Processing

>>> phead.max_x

7.0

>>> phead.max_y

9.2

>>> phead.num_polys
3

>>>

This is interesting, but there are a number of annoyances with this approach. For one,
even though you get the convenience of a class-like interface, the code is rather verbose
and requires the user to specify a lot of low-level detail (e.g., repeated uses of Struct
Field, specification of offsets, etc.). The resulting class is also missing common con-
veniences such as providing a way to compute the total size of the structure.

Any time you are faced with class definitions that are overly verbose like this, you might
consider the use of a class decorator or metaclass. One of the features of a metaclass is
that it can be used to fill in a lot of low-level implementation details, taking that burden
off of the user. As an example, consider this metaclass and slight reformulation of the
Structure class:

class StructureMeta(type):

rr

Metaclass that automatically creates StructField descriptors
def __init__(self, clsname, bases, clsdict):
fields = getattr(self, '_fields_', [])
byte_order = ''
offset = 0
for format, fieldname in fields:
if format.startswith(('<','s',"!"','@")):
byte_order = format[0]
format = format[1:]
format = byte_order + format
setattr(self, fieldname, StructField(format, offset))
offset += struct.calcsize(format)
setattr(self, 'struct_size', offset)

class Structure(metaclass=StructureMeta):
def __init__(self, bytedata):
self._buffer = bytedata

def from_file(cls, f):
return cls(f.read(cls.struct_size))

Using this new Structure class, you can now write a structure definition like this:

class PolyHeader(Structure):
flelds = [
('<i', 'file_code'),
('d', 'min_x"),
('d", 'min_y'),

6.12. Reading Nested and Variable-Sized Binary Structures | 207

('d', 'max_x'),
('d', 'max_y'),
('it', 'num_polys')

As you can see, the specification is a lot less verbose. The added from_file() class
method also makes it easier to read the data from a file without knowing any details
about the size or structure of the data. For example:

>>> f = open('polys.bin', 'rb')
>>> phead = PolyHeader.from_file(f)
>>> phead.file_code == 0x1234
True

>>> phead.min_x

0.5

>>> phead.min_y

0.5

>>> phead.max_x

7.0

>>> phead.max_y

9.2

>>> phead.num_polys

3

>>>

Once you introduce a metaclass into the mix, you can build more intelligence into it.
For example, suppose you want to support nested binary structures. Here’s a reformu-
lation of the metaclass along with a new supporting descriptor that allows it:

class NestedStruct:

o

Descriptor representing a nested structure
def __init__ (self, name, struct_type, offset):
self.name = name
self.struct_type = struct_type
self.offset = offset
def _ get_ (self, instance, cls):
if instance is None:
return self
else:
data = instance._buffer[self.offset:
self.offset+self.struct_type.struct_size]
result = self.struct_type(data)
Save resulting structure back on instance to avoid
further recomputation of this step
setattr(instance, self.name, result)
return result

class StructureMeta(type):

o

Metaclass that automatically creates StructField descriptors

208 | Chapter6: Data Encoding and Processing

def __init__ (self, clsname, bases, clsdict):
fields = getattr(self, '_fields_', [])
byte_order = ''
offset = 0
for format, fieldname in fields:
if isinstance(format, StructureMeta):
setattr(self, fieldname,
NestedStruct(fieldname, format, offset))
offset += format.struct_size
else:
if format.startswith(('<','s","'!','@"')):
byte_order = format[0]
format = format[1:]
format = byte_order + format
setattr(self, fieldname, StructField(format, offset))
offset += struct.calcsize(format)
setattr(self, 'struct_size', offset)

In this code, the NestedStruct descriptor is used to overlay another structure definition
over a region of memory. It does this by taking a slice of the original memory buffer
and using it to instantiate the given structure type. Since the underlying memory buffer
was initialized as a memoryview, this slicing does not incur any extra memory copies.
Instead, it’s just an overlay on the original memory. Moreover, to avoid repeated in-
stantiations, the descriptor then stores the resulting inner structure object on the in-
stance using the same technique described in Recipe 8.10.

Using this new formulation, you can start to write code like this:

class Point(Structure):

filelds = [
('<d", 'x"),
('d', 'y

1

class PolyHeader(Structure):

flelds = [
('<i', 'file_code'),
(Point, 'min'), # nested struct
(Point, 'max'), # nested struct

('l", "num_polys')

]

Amazingly, it will all still work as you expect. For example:

>>> f = open('polys.bin', 'rb')

>>> phead = PolyHeader.from_file(f)
>>> phead.file_code == 0x1234

True

>>> phead.min # Nested structure
<__main__.Point object at 0x1006a48d0>
>>> phead.min.x

6.12. Reading Nested and Variable-Sized Binary Structures | 209

0.5

>>> phead.min.y

0.5

>>> phead.max.x

7.0

>>> phead.max.y

9.2

>>> phead.num_polys
3

>>>

At this point, a framework for dealing with fixed-sized records has been developed, but
what about the variable-sized components? For example, the remainder of the polygon
files contain sections of variable size.

One way to handle this is to write a class that simply represents a chunk of binary data
along with a utility function for interpreting the contents in different ways. This is closely
related to the code in Recipe 6.11:

class SizedRecord:
def __init__(self, bytedata):
self._buffer = memoryview(bytedata)

def from_file(cls, f, size_fmt, includes_size=True):
sz_nbytes = struct.calcsize(size_fmt)
sz_bytes = f.read(sz_nbytes)
sz, = struct.unpack(size_fmt, sz_bytes)
buf = f.read(sz - includes_size * sz_nbytes)
return cls(buf)

def iter_as(self, code):
if isinstance(code, str):
s = struct.Struct(code)
for off in range(0, len(self._buffer), s.size):
yield s.unpack_from(self._buffer, off)
elif isinstance(code, StructureMeta):
size = code.struct_size
for off in range(0, len(self._buffer), size):
data = self._buffer[off:off+size]
yield code(data)

The SizedRecord.from_file() class method is a utility for reading a size-prefixed
chunk of data from a file, which is common in many file formats. As input, it accepts a
structure format code containing the encoding of the size, which is expected to be in
bytes. The optional includes_size argument specifies whether the number of bytes
includes the size header or not. Here’s an example of how you would use this code to
read the individual polygons in the polygon file:

210 | Chapter6: Data Encoding and Processing

>>> f = open('polys.bin', 'rb')

>>> phead = PolyHeader.from_file(f)

>>> phead.num_polys

3

>>> polydata = [SizedRecord.from_file(f, '<i')
ces for n in range(phead.num_polys)]
>>> polydata
[<__main__.SizedRecord object at 0x1006a4d50>,
<__main__.SizedRecord object at 0x1006a4f50>,
<__main__.SizedRecord object at 0x10070da90>]
>>>

As shown, the contents of the SizedRecord instances have not yet been interpreted. To
do that, use the iter_as() method, which accepts a structure format code or Struc
ture class as input. This gives you a lot of flexibility in how to interpret the data. For
example:

>>> for n, poly in enumerate(polydata):
e print('Polygon', n)

ces for p in poly.iter_as('<dd'):
e print(p)

Polygon 0
(1.0, 2.5)
(3.5, 4.0)
(2.5, 1.5)
Polygon 1
(7.0, 1.2)
(5.1, 3.0)
(0.5, 7.5)
(0.8, 9.0)
Polygon 2
(3.4, 6.3)
(1.2, 0.5)
(4.6, 9.2)

>>>

>>> for n, poly in enumerate(polydata):
e print('Polygon', n)

ces for p in poly.iter_as(Point):
e print(p.x, p.y)

Polygon 0
1.0 2.5
3.5 4.0
2.51.5
olygo
0
1
5

o
O NwWw Rk
®© L1 © N D
[y

o o un N

8
Polygon 2

6.12. Reading Nested and Variable-Sized Binary Structures | 211

SR oW
EYENINS
© @ o
NIV

>>>

Putting all of this together, here’s an alternative formulation of the read_polys() func-
tion:

class Point(Structure):

flelds = [
('=d", 'x"),
('d', 'y

]

class PolyHeader(Structure):
flelds = [
('<i', 'file_code'),
(Point, 'min'),
(Point, 'max'),
('i', "num_polys")

]

def read_polys(filename):
polys = []
with open(filename, 'rb') as f:
phead = PolyHeader.from_file(f)
for n in range(phead.num_polys):
rec = SizedRecord.from_file(f, '<i')

poly = [(p.x, p.y)
for p in rec.iter_as(Point)]

polys.append(poly)
return polys

Discussion

This recipe provides a practical application of various advanced programming techni-
ques, including descriptors, lazy evaluation, metaclasses, class variables, and memory-
views. However, they all serve a very specific purpose.

A major feature of the implementation is that it is strongly based on the idea of lazy-
unpacking. When an instance of Structure is created, the __init__() merely creates
a memoryview of the supplied byte data and does nothing else. Specifically, no unpack-
ing or other structure-related operations take place at this time. One motivation for
taking this approach is that you might only be interested in a few specific parts of a
binary record. Rather than unpacking the whole file, only the parts that are actually
accessed will be unpacked.

To implement the lazy unpacking and packing of values, the StructField descriptor
class is used. Each attribute the user lists in _fields_ gets converted to a Struct
Field descriptor that stores the associated structure format code and byte offset into

212 | Chapter6: Data Encoding and Processing

the stored buffer. The StructureMeta metaclass is what creates these descriptors auto-
matically when various structure classes are defined. The main reason for using a
metaclass is to make it extremely easy for a user to specify a structure format with a
high-level description without worrying about low-level details.

One subtle aspect of the StructureMeta metaclass is that it makes byte order sticky.
That is, if any attribute specifies a byte order (< for little endian or > for big endian),
that ordering is applied to all fields that follow. This helps avoid extra typing, but also
makes it possible to switch in the middle of a definition. For example, you might have
something more complicated, such as this:

class ShapeFile(Structure):

filelds = [('>i', 'file_code'), # Big endian

('205', 'unused'),
i 'file_length'),

, 'version'), # Little endian
» 'shape_type'),
'min_x"),
mi-n_y')s
'max_x'),
‘max_y'),
'min_z'"),
'max_z'),
'min_m'),
'max_m')]

. .

('<
(i’
('d
('d
('d
('d'
('d
('d
('d
('d

. .

. .

As noted, the use of a memoryview() in the solution serves a useful role in avoiding
memory copies. When structures start to nest, memoryviews can be used to overlay
different parts of the structure definition on the same region of memory. This aspect of
the solution is subtle, but it concerns the slicing behavior of a memoryview versus a
normal byte array. If you slice a byte string or byte array, you usually get a copy of the
data. Not so with a memoryview—slices simply overlay the existing memory. Thus, this
approach is more efficient.

A number of related recipes will help expand upon the topics used in the solution. See
Recipe 8.13 for a closely related recipe that uses descriptors to build a type system.
Recipe 8.10 has information about lazily computed properties and is related to the
implementation of the NestedStruct descriptor. Recipe 9.19 has an example of using a
metaclass to initialize class members, much in the same manner as the StructureMe
ta class. The source code for Python’s ctypes library may also be of interest, due to its
similar support for defining data structures, nesting of data structures, and similar
functionality.

6.12. Reading Nested and Variable-Sized Binary Structures | 213

6.13. Summarizing Data and Performing Statistics

Problem

You need to crunch through large datasets and generate summaries or other kinds of
statistics.

Solution

For any kind of data analysis involving statistics, time series, and other related techni-
ques, you should look at the Pandas library.

To give you a taste, here’s an example of using Pandas to analyze the City of Chicago
rat and rodent database. At the time of this writing, it's a CSV file with about 74,000
entries:

>>> import pandas

>>> # Read a CSV file, skipping last line

>>> rats = pandas.read_csv('rats.csv', skip_footer=1)
>>> rats

<class 'pandas.core.frame.DataFrame's>

Int64Index: 74055 entries, 0 to 74054

Data columns:

Creation Date 74055 non-null values
Status 74055 non-null values
Completion Date 72154 non-null values
Service Request Number 74055 non-null values
Type of Service Request 74055 non-null values
Number of Premises Bailted 65804 non-null values
Number of Premises with Garbage 65600 non-null values
Number of Premises with Rats 65752 non-null values
Current Activity 66041 non-null values
Most Recent Action 66023 non-null values
Street Address 74055 non-null values
ZIP Code 73584 non-null values
X Coordinate 74043 non-null values
Y Coordinate 74043 non-null values
Ward 74044 non-null values
Police District 74044 non-null values
Community Area 74044 non-null values
Latitude 74043 non-null values
Longitude 74043 non-null values
Location 74043 non-null values

dtypes: float64(11), object(9)

>>> # Investigate range of values for a certain field
>>> rats['Current Activity'].unique()
array([nan, Dispatch Crew, Request Sanitation Inspector], dtype=object)

214 | Chapter 6: Data Encoding and Processing

http://pandas.pydata.org
https://data.cityofchicago.org/Service-Requests/311-Service-Requests-Rodent-Baiting/97t6-zrhs

>>> # Filter the data

>>> crew_dispatched = rats[rats['Current Activity'] == 'Dispatch Crew']

>>> len(crew_dispatched)
65676

>>>

>>> # Find 10 most rat-infested ZIP codes in Chicago
>>> crew_dispatched['ZIP Code'].value_counts()[:10]
60647 3837

60618 3530
60614 3284
60629 3251
60636 2801
60657 2465
60641 2238
60609 2206
60651 2152
60632 2071

>>>

>>> # Group by completion date

>>> dates = crew_dispatched.groupby('Completion Date')
<pandas.core.groupby.DataFrameGroupBy object at 0x10d0a2al0>
>>> len(dates)

472

>>>

>>> # Determine counts on each day
>>> date_counts = dates.size()

>>> date_counts[0:10]

Completion Date

01/03/2011 4
01/03/2012 125
01/04/2011 54
01/04/2012 38
01/05/2011 78
01/05/2012 100
01/06/2011 100
01/06/2012 58
01/07/2011 1
01/09/2012 12

>>>

>>> # Sort the counts
>>> date_counts.sort()
>>> date_counts[-10:]
Completion Date

10/12/2012 313
10/21/2011 314
09/20/2011 316
10/26/2011 319
02/22/2011 325

6.13. Summarizing Data and Performing Statistics

215

10/26/2012 333

03/17/2011 336
10/13/2011 378
10/14/2011 391
10/07/2011 457

>>>

Yes, October 7, 2011, was indeed a very busy day for rats.

Discussion

Pandas is a large library that has more features than can be described here. However, if
you need to analyze large datasets, group data, perform statistics, or other similar tasks,
it’s definitely worth a look.

Python for Data Analysis by Wes McKinney (O’Reilly) also contains much more
information.

216 | Chapter 6: Data Encoding and Processing

http://shop.oreilly.com/product/0636920023784.do

CHAPTER 7
Functions

Defining functions using the def statement is a cornerstone of all programs. The goal
of this chapter is to present some more advanced and unusual function definition and
usage patterns. Topics include default arguments, functions that take any number of
arguments, keyword-only arguments, annotations, and closures. In addition, some

tricky control flow and data passing problems involving callback functions are
addressed.

7.1. Writing Functions That Accept Any Number of
Arguments

Problem

You want to write a function that accepts any number of input arguments.

Solution

To write a function that accepts any number of positional arguments, use a * argument.
For example:

def avg(first, *rest):
return (first + sum(rest)) / (1 + len(rest))

Sample use
avg(1l, 2) # 1.5
avg(1, 2, 3, 4) # 2.5

In this example, rest is a tuple of all the extra positional arguments passed. The code
treats it as a sequence in performing subsequent calculations.

217

To accept any number of keyword arguments, use an argument that starts with **. For
example:

import html

def make_element(name, value, **attrs):

keyvals = [' %s="%s"' % item for item in attrs.items()]

attr_str = ''.join(keyvals)
element = '<{name}{attrs}>{value}</{name}>".format(
name=name,

attrs=attr_str,
value=html.escape(value))
return element

Example
Creates '<item size="large" quantity="6">Albatross</item>'
make_element('item', 'Albatross', size='large', quantity=6)

Creates '<p><spam></p>'
make_element('p', '<spam>')

Here, attrs is a dictionary that holds the passed keyword arguments (if any).
If you want a function that can accept both any number of positional and keyword-only
arguments, use * and ** together. For example:

def anyargs(*args, **kwargs):
print(args) # A tuple
print(kwargs) # A dict
With this function, all of the positional arguments are placed into a tuple args, and all
of the keyword arguments are placed into a dictionary kwargs.

Discussion

A * argument can only appear as the last positional argument in a function definition.
A ** argument can only appear as the last argument. A subtle aspect of function defi-
nitions is that arguments can still appear after a * argument.

def a(x, *args, y):
pass

def b(x, *args, y, **kwargs):
pass

Such arguments are known as keyword-only arguments, and are discussed further in
Recipe 7.2.

218 | Chapter7: Functions

7.2. Writing Functions That Only Accept Keyword
Arguments

Problem

You want a function to only accept certain arguments by keyword.

Solution

This feature is easy to implement if you place the keyword arguments after a * argument
or a single unnamed *. For example:
def recv(maxsize, *, block):

'Receilves a message'
pass

recv(1024, True) # TypeError
recv(1024, block=True) # 0k
This technique can also be used to specify keyword arguments for functions that accept
a varying number of positional arguments. For example:
def mininum(*values, clip=None):
m = min(values)
if clip is not None:

m = clip if clip > m else m
return m

minimum(1, 5, 2, -5, 10) # Returns -5
minimum(1, 5, 2, -5, 10, clip=0) # Returns 0

Discussion

Keyword-only arguments are often a good way to enforce greater code clarity when
specifying optional function arguments. For example, consider a call like this:

msg = recv(1024, False)

If someone is not intimately familiar with the workings of the recv(), they may have
no idea what the False argument means. On the other hand, it is much clearer if the
call is written like this:

msg = recv(1024, block=False)

The use of keyword-only arguments is also often preferrable to tricks involving
**kwargs, since they show up properly when the user asks for help:

>>> help(recv)
Help on function recv in module __main__:

7.2. Writing Functions That Only Accept Keyword Arguments | 219

recv(maxsize, *, block)
Recelves a message

Keyword-only arguments also have utility in more advanced contexts. For example,
they can be used to inject arguments into functions that make use of the *args and
**kwargs convention for accepting all inputs. See Recipe 9.11 for an example.

7.3. Attaching Informational Metadata to Function
Arguments

Problem

You’ve written a function, but would like to attach some additional information to the
arguments so that others know more about how a function is supposed to be used.

Solution

Function argument annotations can be a useful way to give programmers hints about
how a function is supposed to be used. For example, consider the following annotated
function:
def add(x:int, y:int) -> int:
return x +y

The Python interpreter does not attach any semantic meaning to the attached annota-
tions. They are not type checks, nor do they make Python behave any differently than
it did before. However, they might give useful hints to others reading the source code
about what you had in mind. Third-party tools and frameworks might also attach se-
mantic meaning to the annotations. They also appear in documentation:

>>> help(add)
Help on function add in module __main__:

add(x: int, y: int) -> int
>>>

Although you can attach any kind of object to a function as an annotation (e.g., numbers,
strings, instances, etc.), classes or strings often seem to make the most sense.

Discussion

Function annotations are merely stored in a functions __annotations__ attribute. For
example:

>>> add.__annotations__
{'y': <class 'int'>, 'return': <class 'int'>, 'x': <class 'int's}

220 | Chapter7:Functions

Although there are many potential uses of annotations, their primary utility is probably
just documentation. Because Python doesn’t have type declarations, it can often be dif-
ficult to know what youre supposed to pass into a function if youre simply reading its
source code in isolation. An annotation gives someone more of a hint.

See Recipe 9.20 for an advanced example showing how to use annotations to implement
multiple dispatch (i.e., overloaded functions).

7.4. Returning Multiple Values from a Function

Problem

You want to return multiple values from a function.

Solution
To return multiple values from a function, simply return a tuple. For example:

>>> def myfun():
return 1, 2, 3

>>> 3, b, ¢ = myfun()
>>> g

1

>>> b

2

>>> C

3

Discussion

Although it looks like myfun() returns multiple values, a tuple is actually being created.
Itlooks a bit peculiar, but it’s actually the comma that forms a tuple, not the parentheses.
For example:

>>> a = (1, 2) # With parentheses
>>> a

(1, 2)

>>> b =1, 2 # Without parentheses
>>> b

(1, 2)

>>>

When calling functions that return a tuple, it is common to assign the result to multiple
variables, as shown. This is simply tuple unpacking, as described in Recipe 1.1. The
return value could also have been assigned to a single variable:

>>> x = myfun()
>>> X

7.4. Returning Multiple Values from a Function | 221

(1, 2, 3)

>>>

7.5. Defining Functions with Default Arguments

Problem

You want to define a function or method where one or more of the arguments are
optional and have a default value.

Solution

On the surface, defining a function with optional arguments is easy—simply assign
values in the definition and make sure that default arguments appear last. For example:

def spam(a, b=42):
print(a, b)

spam(1) # Ok. a=1, b=42

spam(l, 2) # Ok. a=1, b=2
If the default value is supposed to be a mutable container, such as a list, set, or dictionary,
use None as the default and write code like this:

Using a list as a default value
def spam(a, b=None):
if b is None:

b=1[]

If, instead of providing a default value, you want to write code that merely tests whether
an optional argument was given an interesting value or not, use this idiom:

_no_value = object()

def spam(a, b=_no_value):
if b is _no_value:
print('No b value supplied')

Here’s how this function behaves:

>>> spam(1)

No b value supplied

>>> spam(1, 2) #b =2
>>> spam(l, None) # b = None
>>>

Carefully observe that there is a distinction between passing no value at all and passing
a value of None.

222 | Chapter7:Functions

Discussion

Defining functions with default arguments is easy, but there is a bit more to it than meets
the eye.

First, the values assigned as a default are bound only once at the time of function defi-
nition. Try this example to see it:

>>> X = 42
>>> def spam(a, b=x):
print(a, b)

>>> spam(1)

142

>>> X = 23 # Has no effect
>>> spam(1)

142

>>>

Notice how changing the variable x (which was used as a default value) has no effect
whatsoever. This is because the default value was fixed at function definition time.

Second, the values assigned as defaults should always be immutable objects, such as
None, True, False, numbers, or strings. Specifically, never write code like this:

def spam(a, b=[]): # NO!

If you do this, you can run into all sorts of trouble if the default value ever escapes the
function and gets modified. Such changes will permanently alter the default value across
future function calls. For example:

>>> def spam(a, b=[]):
print(b)
return b

>>> X = spam(1)
>5> X

[1

>>> x.append(99)

>>> x.append('Yow!")

>>> X

[99, 'Yow!']

>>> spam(1) # Modified list gets returned!
[99, 'Yow!']

>>>

That’s probably not what you want. To avoid this, it’s better to assign None as a default
and add a check inside the function for it, as shown in the solution.

The use of the is operator when testing for None is a critical part of this recipe. Some-
times people make this mistake:

7.5. Defining Functions with Default Arguments | 223

def spam(a, b=None):
if not b: # NO! Use 'b is None' instead
b =11

The problem here is that although None evaluates to False, many other objects (e.g.,
zero-length strings, lists, tuples, dicts, etc.) do as well. Thus, the test just shown would
falsely treat certain inputs as missing. For example:

>>> spam(1) # 0K

>>> x = []

>>> spam(1, X) # Silent error. x value overwritten by default
>>> spam(1, 0) # Silent error. O ignored

>>> spam(1, '") # Silent error. '' ignored

>>>

The last part of this recipe is something that’s rather subtle—a function that tests to see
whether a value (any value) has been supplied to an optional argument or not. The tricky
part here is that you can’t use a default value of None, 0, or False to test for the presence
of auser-supplied argument (since all of these are perfectly valid values that a user might
supply). Thus, you need something else to test against.

To solve this problem, you can create a unique private instance of object, as shown in
the solution (the _no_value variable). In the function, you then check the identity of
the supplied argument against this special value to see if an argument was supplied or
not. The thinking here is that it would be extremely unlikely for a user to pass the
_no_value instance in as an input value. Therefore, it becomes a safe value to check
against if you're trying to determine whether an argument was supplied or not.

The use of object() might look rather unusual here. object is a class that serves as the
common base class for almost all objects in Python. You can create instances of ob
ject, but they are wholly uninteresting, as they have no notable methods nor any in-
stance data (because there is no underlying instance dictionary, you can't even set any
attributes). About the only thing you can do is perform tests for identity. This makes
them useful as special values, as shown in the solution.

7.6. Defining Anonymous or Inline Functions

Problem

You need to supply a short callback function for use with an operation such as sort(),
but you don’t want to write a separate one-line function using the def statement. Instead,
you’d like a shortcut that allows you to specify the function “in line”

224 | Chapter7:Functions

Solution

Simple functions that do nothing more than evaluate an expression can be replaced by
a lambda expression. For example:

>>> add = lambda x, y: x + vy
>>> add(2,3)

5

>>> add('hello', 'world')
'"helloworld’

The use of lambda here is the same as having typed this:

>>> def add(x, y):
return x + vy

>>> add(2,3)
5

>>>

Typically, lambda is used in the context of some other operation, such as sorting or a
data reduction:

>>> names = ['David Beazley', 'Brian Jones',

v 'Raymond Hettinger', 'Ned Batchelder']

>>> sorted(names, key=lambda name: name.split()[-1].lower())

['Ned Batchelder', 'David Beazley', 'Raymond Hettinger', 'Brian Jones']
>>>

Discussion

Although lambda allows you to define a simple function, its use is highly restricted. In
particular, only a single expression can be specified, the result of which is the return
value. This means that no other language features, including multiple statements, con-
ditionals, iteration, and exception handling, can be included.

You can quite happily write a lot of Python code without ever using lambda. However,
you’ll occasionally encounter it in programs where someone is writing a lot of tiny
functions that evaluate various expressions, or in programs that require users to supply
callback functions.

7.7. Capturing Variables in Anonymous Functions

Problem

You've defined an anonymous function using lambda, but you also need to capture the
values of certain variables at the time of definition.

7.7. Capturing Variables in Anonymous Functions | 225

Solution

Consider the behavior of the following code:

>>> x = 10
>>> a3 = lambda y: x + y
>>> x = 20
>>> b = lambda y: x + y

>>>

Now ask yourself a question. What are the values of a(10) and b(10)? If you think the
results might be 20 and 30, you would be wrong:

>>> a(10)
30
>>> b(10)
30

>>>

The problem here is that the value of x used in the lambda expression is a free variable
that gets bound at runtime, not definition time. Thus, the value of x in the lambda
expressions is whatever the value of the x variable happens to be at the time of execution.
For example:

>>> X = 15
>>> a(10)

25

>>> X = 3

>>> a(10)

13

>>>

If you want an anonymous function to capture a value at the point of definition and
keep it, include the value as a default value, like this:

>>> x = 10
>>> a3 = lambda y, x=x: X +y
>>> x = 20
>>> b = lambda y, x=x: X +y
>>> a(10)
20
>>> b(10)
30
>>>
Discussion

The problem addressed in this recipe is something that tends to come up in code that
tries to be just a little bit too clever with the use of lambda functions. For example,
creating a list of lambda expressions using a list comprehension or in a loop of some

226 | Chapter7:Functions

kind and expecting the lambda functions to remember the iteration variable at the time
of definition. For example:

>>> funcs = [lambda x: x+n for n in range(5)]
>>> for f in funcs:
print(f(0))

A DDA DD .
P

>>>

Notice how all functions think that n has the last value during iteration. Now compare
to the following:

>>> funcs = [lambda x, n=n: x+n for n in range(5)]
>>> for f in funcs:
print(f(0))

A WNREL O
.

>>>

As you can see, the functions now capture the value of n at the time of definition.

7.8. Making an N-Argument Callable Work As a Callable
with Fewer Arguments

Problem

You have a callable that you would like to use with some other Python code, possibly as
a callback function or handler, but it takes too many arguments and causes an exception
when called.

Solution

If you need to reduce the number of arguments to a function, you should use func
tools.partial(). The partial() function allows you to assign fixed values to one or
more of the arguments, thus reducing the number of arguments that need to be supplied
to subsequent calls. To illustrate, suppose you have this function:

def spam(a, b, c, d):
print(a, b, c, d)

7.8. Making an N-Argument Callable Work As a Callable with Fewer Arguments | 227

Now consider the use of partial() to fix certain argument values:

>>> from functools import partial

>>> sl = partial(spam, 1) #a=1
>>> s1(2, 3, 4)

1234

>>> s1(4, 5, 6)

1456

>>> s2 = partial(spam, d=42) #d
>>> s2(1, 2, 3)

12342

>>> s2(4, 5, 5)

4 55 42

>>> s3 = partial(spam, 1, 2, d=42) #a =1, b =2, d = 42
>>> s3(3)

12342

>>> s3(4)

12442

>>> s3(5)

12542

>>>

42

Observe that partial() fixes the values for certain arguments and returns a new callable
as a result. This new callable accepts the still unassigned arguments, combines them
with the arguments given to partial(), and passes everything to the original function.

Discussion

This recipe is really related to the problem of making seemingly incompatible bits of
code work together. A series of examples will help illustrate.

As a first example, suppose you have a list of points represented as tuples of (x,y) co-
ordinates. You could use the following function to compute the distance between two
points:

points = [(1, 2), (3, 4), (5, 6), (7, 8) 1]

import math
def distance(pl, p2):
x1, y1 = p1
X2, y2 = p2
return math.hypot(x2 - x1, y2 - y1)
Now suppose you want to sort all of the points according to their distance from some
other point. The sort() method of lists accepts a key argument that can be used to
customize sorting, but it only works with functions that take a single argument (thus,
distance() is not suitable). Here’s how you might use partial() to fix it:

228 | Chapter7:Functions

>>>
>>>
>>>

[(,

>>>

pt = (4, 3)
points.sort(key=partial(distance,pt))
points

4), (1, 2), (5, 6), (7, 8)]

As an extension of this idea, partial() can often be used to tweak the argument sig-
natures of callback functions used in other libraries. For example, here’s a bit of code
that uses multiprocessing to asynchronously compute a result which is handed to a
callback function that accepts both the result and an optional logging argument:

def

A
def

if

__name__ ==

output_result(result, log=None):
if log is not None:
log.debug('Got: %r', result)

sample function
add(x, y):
return x +y

__main__
import logging

from multiprocessing import Pool
from functools import partial

logging.basicConfig(level=1logging.DEBUG)
log = logging.getlLogger('test')

p = Pool()

p.apply_async(add, (3, 4), callback=partial(output_result, log=1log))
p.close()

p.Jjoin()

When supplying the callback function using apply_async(), the extra logging argu-
ment is given using partial(). multiprocessing is none the wiser about all of this—
it simply invokes the callback function with a single value.

As a similar example, consider the problem of writing network servers. The socket
server module makes it relatively easy. For example, here is a simple echo server:

from socketserver import StreamRequestHandler, TCPServer

class EchoHandler(StreamRequestHandler):

serv

def handle(self):
for line in self.rfile:
self.wfile.write(b'GOT:' + line)

= TCPServer(('', 15000), EchoHandler)

serv.serve_forever()

However, suppose you want to give the EchoHandler class an __init__() method that
accepts an additional configuration argument. For example:

7.8. Making an N-Argument Callable Work As a Callable with Fewer Arguments | 229

class EchoHandler(StreamRequestHandler):

ack i1s added keyword-only argument. *args, **kwargs are
any normal parameters supplied (which are passed on)
def __init__(self, *args, ack, **kwargs):

self.ack = ack

super().__init__(*args, **kwargs)
def handle(self):

for line in self.rfile:

self.wfile.write(self.ack + line)

If you make this change, you’ll find there is no longer an obvious way to plug it into the
TCPServer class. In fact, you'll find that the code now starts generating exceptions like
this:

Exception happened during processing of request from ('127.0.0.1', 59834)
Traceback (most recent call last):

TypeError: __init__() missing 1 required keyword-only argument: 'ack'

At first glance, it seems impossible to fix this code, short of modifying the source code
to socketserver or coming up with some kind of weird workaround. However, it’s easy
to resolve using partial()—just use it to supply the value of the ack argument, like
this:

from functools import partial

serv = TCPServer(('', 15000), partial(EchoHandler, ack=b'RECEIVED:'))

serv.serve_forever()
In this example, the specification of the ack argument in the __init__() method might
look alittle funny, but it’s being specified as a keyword-only argument. This is discussed
further in Recipe 7.2.

The functionality of partial() is sometimes replaced with a lambda expression. For
example, the previous examples might use statements such as this:

points.sort(key=lambda p: distance(pt, p))
p.apply_async(add, (3, 4), callback=lambda result: output_result(result,log))

serv = TCPServer(('', 15000),
lambda *args, **kwargs: EchoHandler(*args,
ack=b'RECEIVED: "',
**kwargs))

This code works, but it's more verbose and potentially a lot more confusing to someone
reading it. Using partial() is a bit more explicit about your intentions (supplying
values for some of the arguments).)

230 | Chapter7:Functions

7.9. Replacing Single Method Classes with Functions

Problem

You have a class that only defines a single method besides __init__(). However, to
simplify your code, you would much rather just have a simple function.

Solution

In many cases, single-method classes can be turned into functions using closures. Con-
sider, as an example, the following class, which allows a user to fetch URLs using a kind
of templating scheme.

from urllib.request import urlopen

class UrlTemplate:
def __init_ (self, template):
self.template = template
def open(self, **kwargs):
return urlopen(self.template.format_map(kwargs))

Example use. Download stock data from yahoo

yahoo = UrlTemplate('http://finance.yahoo.com/d/quotes.csv?s={names}&f={fields}")

for line in yahoo.open(names='IBM,AAPL,FB', fields='sliclv'):
print(line.decode('utf-8"))

The class could be replaced with a much simpler function:

def urltemplate(template):
def opener(**kwargs):
return urlopen(template.format_map(kwargs))
return opener

Example use

yahoo = urltemplate('http://finance.yahoo.com/d/quotes.csv?s={names}&f={fields}")

for line in yahoo(names='IBM,AAPL,FB', filelds='sliciv'):
print(line.decode('utf-8"))

Discussion

In many cases, the only reason you might have a single-method class is to store addi-
tional state for use in the method. For example, the only purpose of the UrlTemplate
classistohold the template value someplace so that it can be used in the open () method.

Using an inner function or closure, as shown in the solution, is often more elegant.
Simply stated, a closure is just a function, but with an extra environment of the variables
that are used inside the function. A key feature of a closure is that it remembers the
environment in which it was defined. Thus, in the solution, the opener() function
remembers the value of the template argument, and uses it in subsequent calls.

7.9. Replacing Single Method Classes with Functions | 231

Whenever you're writing code and you encounter the problem of attaching additional
state to a function, think closures. They are often a more minimal and elegant solution
than the alternative of turning your function into a full-fledged class.

7.10. Carrying Extra State with Callback Functions

Problem

You're writing code that relies on the use of callback functions (e.g., event handlers,
completion callbacks, etc.), but you want to have the callback function carry extra state
for use inside the callback function.

Solution

This recipe pertains to the use of callback functions that are found in many libraries
and frameworks—especially those related to asynchronous processing. To illustrate and
for the purposes of testing, define the following function, which invokes a callback:

def apply_async(func, args, *, callback):
Compute the result
result = func(*args)

Invoke the callback with the result
callback(result)

In reality, such code might do all sorts of advanced processing involving threads, pro-
cesses, and timers, but that’s not the main focus here. Instead, we're simply focused on
the invocation of the callback. Here’s an example that shows how the preceding code
gets used:

>>> def print_result(result):
print('Got:', result)

>>> def add(x, y):
return x + y

>>> apply_async(add, (2, 3), callback=print_result)

Got: 5

>>> apply_async(add, ('hello', 'world'), callback=print_result)
Got: helloworld

>>>

Asyou will notice, the print_result() function only accepts a single argument, which
is the result. No other information is passed in. This lack of information can sometimes
present problems when you want the callback to interact with other variables or parts
of the environment.

232 | Chapter7: Functions

One way to carry extra information in a callback is to use a bound-method instead of
a simple function. For example, this class keeps an internal sequence number that is
incremented every time a result is received:

class ResultHandler:
def __init__(self):
self.sequence = 0
def handler(self, result):
self.sequence += 1
print('[{}] Got: {}'.format(self.sequence, result))

To use this class, you would create an instance and use the bound method handler as
the callback:

>>> r = ResultHandler()

>>> apply_async(add, (2, 3), callback=r.handler)

[1] Got: 5

>>> apply_async(add, ('hello', 'world'), callback=r.handler)
[2] Got: helloworld

>>>
As an alternative to a class, you can also use a closure to capture state. For example:

def make_handler():
sequence = 0
def handler(result):
nonlocal sequence
sequence += 1
print('[{}] Got: {}'.format(sequence, result))
return handler

Here is an example of this variant:

>>> handler = make_handler()

>>> apply_async(add, (2, 3), callback=handler)

[1] Got: 5

>>> apply_async(add, ('hello', 'world'), callback=handler)
[2] Got: helloworld

>>>

Asyetanother variation on this theme, you can sometimes use a coroutine to accomplish
the same thing:

def make_handler():
sequence = 0
while True:
result = yield
sequence += 1
print('[{}] Got: {}'.format(sequence, result))

For a coroutine, you would use its send() method as the callback, like this:

>>> handler = make_handler()
>>> next(handler) # Advance to the yield

7.10. Carrying Extra State with Callback Functions | 233

>>> apply_async(add, (2, 3), callback=handler.send)

[1] Got: 5

>>> apply_async(add, ('hello', 'world'), callback=handler.send)
[2] Got: helloworld

>>>

Last, but not least, you can also carry state into a callback using an extra argument and
partial function application. For example:

>>> class SequenceNo:
def __init__(self):
self.sequence = 0

>>> def handler(result, seq):
seq.sequence += 1
print('[{}] Got: {}'.format(seq.sequence, result))

>>> seq = SequenceNo()

>>> from functools import partial

>>> apply_async(add, (2, 3), callback=partial(handler, seg=seq))

[1] Got: 5

>>> apply_async(add, ('hello', 'world'), callback=partial(handler, seg=seq))
[2] Got: helloworld

>>>

Discussion

Software based on callback functions often runs the risk of turning into a huge tangled
mess. Part of the issue is that the callback function is often disconnected from the code
that made the initial request leading to callback execution. Thus, the execution envi-
ronment between making the request and handling the result is effectively lost. If you
want the callback function to continue with a procedure involving multiple steps, you
have to figure out how to save and restore the associated state.

There are really two main approaches that are useful for capturing and carrying state.
You can carry it around on an instance (attached to a bound method perhaps) or you
can carry it around in a closure (an inner function). Of the two techniques, closures are
perhaps a bit more lightweight and natural in that they are simply built from functions.
They also automatically capture all of the variables being used. Thus, it frees you from
having to worry about the exact state needs to be stored (it’s determined automatically
from your code).

If using closures, you need to pay careful attention to mutable variables. In the solution,
the nonlocal declaration is used to indicate that the sequence variable is being modified
from within the callback. Without this declaration, you'll get an error.

The use of a coroutine as a callback handler is interesting in that it is closely related to
the closure approach. In some sense, it’s even cleaner, since there is just a single function.
Moreover, variables can be freely modified without worrying about nonlocal declara-

234 | Chapter7:Functions

tions. The potential downside is that coroutines don't tend to be as well understood as
other parts of Python. There are also a few tricky bits such as the need to call next() on
a coroutine prior to using it. That’s something that could be easy to forget in practice.
Nevertheless, coroutines have other potential uses here, such as the definition of an
inlined callback (covered in the next recipe).

The last technique involving partial() is useful if all you need to do is pass extra values
into a callback. Instead of using partial(), you'll sometimes see the same thing ac-
complished with the use of a lambda:

>>> apply_async(add, (2, 3), callback=lambda r: handler(r, seq))

[1] Got: 5

>>>
For more examples, see Recipe 7.8, which shows how to use partial() to change ar-
gument signatures.

7.11. Inlining Callback Functions

Problem

You're writing code that uses callback functions, but youre concerned about the pro-
liferation of small functions and mind boggling control flow. You would like some way
to make the code look more like a normal sequence of procedural steps.

Solution

Callback functions can be inlined into a function using generators and coroutines. To
illustrate, suppose you have a function that performs work and invokes a callback as
follows (see Recipe 7.10):

def apply_async(func, args, *, callback):
Compute the result
result = func(*args)

Invoke the callback with the result
callback(result)

Now take a look at the following supporting code, which involves an Async class and
an inlined_async decorator:

from queue import Queue
from functools import wraps

class Async:
def __init__(self, func, args):
self.func = func
self.args = args

7.11. Inlining Callback Functions | 235

def inlined_async(func):
(func)
def wrapper(*args):
f = func(*args)
result_queue = Queue()
result_queue.put(None)
while True:
result = result_gqueue.get()
try:
a = f.send(result)
apply_async(a.func, a.args, callback=result_gueue.put)
except StopIteration:
break
return wrapper

These two fragments of code will allow you to inline the callback steps using yield
statements. For example:

def add(x, y):
return x + y

def test():

r = yield Async(add, (2, 3))

print(r)

r = yield Async(add, ('hello', 'world"))

print(r)

for n in range(10):
r = yield Async(add, (n, n))
print(r)

print('Goodbye')

If you call test(), you'll get output like this:

elloworld

0o AN ITU

10
12
14
16
18
Goodbye

Aside from the special decorator and use of yield, you will notice that no callback
functions appear anywhere (except behind the scenes).

236 | Chapter7:Functions

Discussion

This recipe will really test your knowledge of callback functions, generators, and control
flow.

First, in code involving callbacks, the whole point is that the current calculation will
suspend and resume at some later point in time (e.g., asynchronously). When the cal-
culation resumes, the callback will get executed to continue the processing. The ap
ply_async() function illustrates the essential parts of executing the callback, although
in reality it might be much more complicated (involving threads, processes, event han-
dlers, etc.).

The idea that a calculation will suspend and resume naturally maps to the execution
model of a generator function. Specifically, the yield operation makes a generator
function emit a value and suspend. Subsequent calls to the __next__() or send()
method of a generator will make it start again.

With this in mind, the core of this recipe is found in the inline_async() decorator
function. The key idea is that the decorator will step the generator function through all
of its yield statements, one at a time. To do this, a result queue is created and initially
populated with a value of None. A loop is then initiated in which a result is popped off
the queue and sent into the generator. This advances to the next yield, at which point
an instance of Async is received. The loop then looks at the function and arguments,
and initiates the asynchronous calculation apply_async(). However, the sneakiest part
of this calculation is that instead of using a normal callback function, the callback is set
to the queue put() method.

At this point, it is left somewhat open as to precisely what happens. The main loop
immediately goes back to the top and simply executes a get() operation on the queue.
If data is present, it must be the result placed there by the put() callback. If nothing is
there, the operation blocks, waiting for a result to arrive at some future time. How that
might happen depends on the precise implementation of the apply_async() function.

If youre doubtful that anything this crazy would work, you can try it with the multi-
processing library and have async operations executed in separate processes:

if __name__ == '__main__
import multiprocessing
pool = multiprocessing.Pool()
apply_async = pool.apply_async

Run the test function
test()

Indeed, you'll find that it works, but unraveling the control flow might require more
coffee.

7.11. Inlining Callback Functions | 237

Hiding tricky control flow behind generator functions is found elsewhere in the stan-
dard library and third-party packages. For example, the @contextmanager decorator in
the contextlib performs a similar mind-bending trick that glues the entry and exit
from a context manager together across a yield statement. The popular Twisted pack-
age has inlined callbacks that are also similar.

7.12. Accessing Variables Defined Inside a Closure

Problem

You would like to extend a closure with functions that allow the inner variables to be
accessed and modified.

Solution

Normally, the inner variables of a closure are completely hidden to the outside world.
However, you can provide access by writing accessor functions and attaching them to
the closure as function attributes. For example:

def sample():
n=20
Closure function
def func():
print('n="', n)

Accessor methods for n
def get_n():
return n

def set_n(value):
nonlocal n
n = value

Attach as function attributes
func.get_n = get_n

func.set_n = set_n

return func

Here is an example of using this code:

>>> f = sample()
>>> f()

n= 0

>>> f.set_n(10)
>>> ()

n= 10

>>> f.get_n()

10

>>>

238 | Chapter7: Functions

http://twistedmatrix.com
http://twistedmatrix.com

Discussion

There are two main features that make this recipe work. First, nonlocal declarations
make it possible to write functions that change inner variables. Second, function at-
tributes allow the accessor methods to be attached to the closure function in a straight-
forward manner where they work a lot like instance methods (even though no class is
involved).

A slight extension to this recipe can be made to have closures emulate instances of a
class. All you need to do is copy the inner functions over to the dictionary of an instance
and return it. For example:

import sys
class ClosurelInstance:
def __init__(self, locals=None):
if locals is None:
locals = sys._getframe(1).f_locals

Update instance dictionary with callables
self.__dict__.update((key,value) for key, value in locals.items()
if callable(value))
Redirect special methods
def __len__ (self):
return self.__dict__['_len__']()

Example use
def Stack():
items = []

def push(item):
items.append(item)

def pop():
return items.pop()

def __len__():
return len(items)

return ClosureInstance()
Here’s an interactive session to show that it actually works:

>>> s = Stack()

>>> S

<__main__.Closurelnstance object at 0x10069ed10>
>>> s.push(10)

>>> s.push(20)

>>> s.push('Hello")

>>> len(s)

3

>>> s.pop()
'Hello'

7.12. Accessing Variables Defined Inside a Closure | 239

>>> s.pop()
20

>>> s.pop()
10

>>>

Interestingly, this code runs a bit faster than using a normal class definition. For example,
you might be inclined to test the performance against a class like this:

class Stack2:
def __init__(self):
self.items = []

def push(self, item):
self.items.append(item)

def pop(self):
return self.items.pop()

def __len_ (self):
return len(self.items)

If you do, you'll get results similar to the following:

>>> from timeit import timeit

>>> # Test involving closures

>>> s = Stack()

>>> timeit('s.push(1);s.pop()', 'from __main__ import s')
0.9874754269840196

>>> # Test involving a class

>>> s = Stack2()

>>> timeit('s.push(1);s.pop()', 'from __main__ import s')
1.0707052160287276

>>>
As shown, the closure version runs about 8% faster. Most of that is coming from

streamlined access to the instance variables. Closures are faster because there’s no extra
self variable involved.

Raymond Hettinger has devised an even more diabolical variant of this idea. However,
should you be inclined to do something like this in your code, be aware that it’s still a
rather weird substitute for a real class. For example, major features such as inheritance,
properties, descriptors, or class methods don’t work. You also have to play some tricks
to get special methods to work (e.g., see the implementation of __len__() in Closur
eInstance).

240 | Chapter7:Functions

http://bit.ly/11DSni2

Lastly, you’'ll run the risk of confusing people who read your code and wonder why it
doesn’'t look anything like a normal class definition (of course, they’ll also wonder why
it’s faster). Nevertheless, it’s an interesting example of what can be done by providing
access to the internals of a closure.

In the big picture, adding methods to closures might have more utility in settings where
you want to do things like reset the internal state, flush buffers, clear caches, or have
some kind of feedback mechanism.

7.12. Accessing Variables Defined Inside a Closure | 241

CHAPTER 8
Classes and Objects

The primary focus of this chapter is to present recipes to common programming pat-
terns related to class definitions. Topics include making objects support common
Python features, usage of special methods, encapsulation techniques, inheritance, mem-
ory management, and useful design patterns.

8.1. Changing the String Representation of Instances

Problem

You want to change the output produced by printing or viewing instances to something
more sensible.

Solution

To change the string representation of an instance, define the __str__() and
__repr__() methods. For example:

class Pair:
def __init_ (self, x, y):
self.x = x
self.y =y

def __repr__(self):
return 'Pair({0.x!r}, {0.y!r})'.format(self)
def __str__(self):
return '({0.x!s}, {0.y!s})'.format(self)
The __repr__() method returns the code representation of an instance, and is usually
the text you would type to re-create the instance. The built-in repr() function returns
this text, as does the interactive interpreter when inspecting values. The __str__()
method converts the instance to a string, and is the output produced by the str() and
print() functions. For example:

243

>>> p = Pair(3, 4)

>>> p
Pair(3, 4) # __repr__() output
>>> print(p)

(3, 4) # _ str__() output

>>>

The implementation of this recipe also shows how different string representations may
be used during formatting. Specifically, the special ! r formatting code indicates that the
output of __repr__() should be used instead of __str__(), the default. You can try this
experiment with the preceding class to see this:

>>> p = Pair(3, 4)

>>> print('p is {0!r}'.format(p))

p is Pair(3, 4)

>>> print('p is {0}'.format(p))

pis (3, 4)

>>>

Discussion

Defining__repr__()and __str__() is often good practice, as it can simplify debugging
and instance output. For example, by merely printing or logging an instance, a pro-
grammer will be shown more useful information about the instance contents.

It is standard practice for the output of __repr__() to produce text such that
eval(repr(x)) == x. If this is not possible or desired, then it is common to create a
useful textual representation enclosed in < and > instead. For example:

>>> f = open('file.dat")

>>> f

<_i0.TextIOWrapper name='file.dat' mode='r' encoding='UTF-8'>
>>>

If no __str__() is defined, the output of __repr__() is used as a fallback.

The use of format() in the solution might look a little funny, but the format code {6.x}
specifies the x-attribute of argument 0. So, in the following function, the 0 is actually
the instance self:
def __repr__(self):
return 'Pair({0.x!r}, {0.y!r})"'.format(self)
As an alternative to this implementation, you could also use the % operator and the
following code:

def __repr__(self):
return 'Pair(%r, %r)' % (self.x, self.y)

244 | Chapter8: Classes and Objects

8.2. Customizing String Formatting

Problem

You want an object to support customized formatting through the format() function
and string method.

Solution

To customize string formatting, define the __ format__() method on a class. For
example:

_formats = {
'ymd' : '{d.year}-{d.month}-{d.day}',
'mdy' : '{d.month}/{d.day}/{d.year}',
'dmy' : '{d.day}/{d.month}/{d.year}'
}

class Date:
def __init__(self, year, month, day):
self.year = year
self.month = month
self.day = day

def _ format__ (self, code):
if code == "":
code = 'ymd'
fmt = _formats[code]
return fmt.format(d=self)

Instances of the Date class now support formatting operations such as the following:

>>> d = Date(2012, 12, 21)

>>> format(d)

'2012-12-21"

>>> format(d, 'mdy')

'12/21/2012"

>>> 'The date is {:ymd}'.format(d)
'The date is 2012-12-21'

>>> 'The date is {:mdy}'.format(d)
'The date is 12/21/2012'

>>>

Discussion

The __format__() method provides a hook into Python’s string formatting function-
ality. It's important to emphasize that the interpretation of format codes is entirely up
to the class itself. Thus, the codes can be almost anything at all. For example, consider
the following from the datetime module:

8.2. Customizing String Formatting | 245

>>> from datetime import date

>>> d = date(2012, 12, 21)

>>> format(d)

'2012-12-21"

>>> format(d, '%A, %B %d, %Y')

'Friday, December 21, 2012'

>>> 'The end 1s {:%d %b %Y}. Goodbye'.format(d)
'The end is 21 Dec 2012. Goodbye'

>>>

There are some standard conventions for the formatting of the built-in types. See the
documentation for the string module for a formal specification.

8.3. Making Objects Support the Context-Management
Protocol

Problem

You want to make your objects support the context-management protocol (the with
statement).

Solution

In order to make an object compatible with the with statement, you need to implement

__enter__() and __exit__() methods. For example, consider the following class,
which provides a network connection:

from socket import socket, AF_INET, SOCK_STREAM

class LazyConnection:
def __init__(self, address, family=AF_INET, type=SOCK_STREAM):
self.address = address
self.family = AF_INET
self.type = SOCK_STREAM
self.sock = None

def __enter__ (self):
if self.sock is not None:
raise RuntimeError('Already connected')
self.sock = socket(self.family, self.type)
self.sock.connect(self.address)
return self.sock

def __exit_ (self, exc_ty, exc_val, tb):
self.sock.close()
self.sock = None

246 | Chapter8: Classes and Objects

http://docs.python.org/3/library/string.html

The key feature of this class is that it represents a network connection, but it doesn't
actually do anything initially (e.g., it doesn’t establish a connection). Instead, the con-
nection is established and closed using the with statement (essentially on demand). For
example:

from functools import partial

conn = LazyConnection(('www.python.org', 80))

Connection closed

with conn as s:
conn.__enter__() executes: connection open
s.send(b'GET /index.html HTTP/1.0\r\n')
s.send(b'Host: www.python.org\r\n')
s.send(b'\r\n')
resp = b''.join(iter(partial(s.recv, 8192), b'"))
conn.__exit__() executes: connection closed

Discussion

The main principle behind writing a context manager is that youre writing code that’s
meant to surround a block of statements as defined by the use of the with statement.
When the with statement is first encountered, the __enter__() method is triggered.
The return value of __enter__() (if any) is placed into the variable indicated with the
as qualifier. Afterward, the statements in the body of the with statement execute. Finally,
the __exit__() method is triggered to clean up.

This control flow happens regardless of what happens in the body of the with statement,
including if there are exceptions. In fact, the three arguments to the __exit__() method
contain the exception type, value, and traceback for pending exceptions (if any). The
__exit__() method can choose to use the exception information in some way or to
ignore it by doing nothing and returning None as a result. If __exit__() returns True,
the exception is cleared as if nothing happened and the program continues executing
statements immediately after the with block.

One subtle aspect of this recipe is whether or not the LazyConnection class allows nested
use of the connection with multiple with statements. As shown, only a single socket
connection at a time is allowed, and an exception is raised if a repeated with statement
is attempted when a socket is already in use. You can work around this limitation with
a slightly different implementation, as shown here:

from socket import socket, AF_INET, SOCK_STREAM

class LazyConnection:
def __init__ (self, address, family=AF_INET, type=SOCK_STREAM):
self.address = address
self.family = AF_INET
self.type = SOCK_STREAM
self.connections = []

8.3. Making Objects Support the Context-Management Protocol | 247

def __enter__(self):
sock = socket(self.family, self.type)
sock.connect(self.address)
self.connections.append(sock)
return sock

def __exit__(self, exc_ty, exc_val, tb):
self.connections.pop().close()

Example use
from functools import partial

conn = LazyConnection(('www.python.org', 80))
with conn as si:

with conn as s2:

s1 and s2 are independent sockets

In this second version, the LazyConnection class serves as a kind of factory for con-
nections. Internally, a list is used to keep a stack. Whenever __enter__() executes, it
makes a new connection and adds it to the stack. The __exit__() method simply pops
the last connection off the stack and closes it. It’s subtle, but this allows multiple con-
nections to be created at once with nested with statements, as shown.

Context managers are most commonly used in programs that need to manage resources
such as files, network connections, and locks. A key part of such resources is they have
to be explicitly closed or released to operate correctly. For instance, if you acquire a lock,
then you have to make sure you release it, or else you risk deadlock. By implementing
__enter__(), __exit__(),and using the with statement, it is much easier to avoid such
problems, since the cleanup code in the __exit__() method is guaranteed to run no
matter what.

An alternative formulation of context managers is found in the contextmanager mod-
ule. See Recipe 9.22. A thread-safe version of this recipe can be found in Recipe 12.6.

8.4. Saving Memory When Creating a Large Number of
Instances

Problem

Your program creates a large number (e.g., millions) of instances and uses a large
amount of memory.

248 | Chapter8: Classes and Objects

Solution

For classes that primarily serve as simple data structures, you can often greatly reduce
the memory footprint of instances by adding the __slots__ attribute to the class defi-
nition. For example:

class Date:
__slots__ = ['year', 'month', 'day']
def __init__(self, year, month, day):
self.year = year
self.month = month
self.day = day

Whenyoudefine __slots__, Python uses a much more compact internal representation
for instances. Instead of each instance consisting of a dictionary, instances are built
around a small fixed-sized array, much like a tuple or list. Attribute names listed in the
__slots__ specifier are internally mapped to specific indices within this array. A side
effect of using slots is that it is no longer possible to add new attributes to instances—
you are restricted to only those attribute names listed in the __slots__ specifier.

Discussion

The memory saved by using slots varies according to the number and type of attributes
stored. However, in general, the resulting memory use is comparable to that of storing
data in a tuple. To give you an idea, storing a single Date instance without slots requires
428 bytes of memory on a 64-bit version of Python. If slots is defined, it drops to 156
bytes. In a program that manipulated a large number of dates all at once, this would
make a significant reduction in overall memory use.

Although slots may seem like a feature that could be generally useful, you should resist
the urge to use it in most code. There are many parts of Python that rely on the normal
dictionary-based implementation. In addition, classes that define slots don’t support
certain features such as multiple inheritance. For the most part, you should only use
slots on classes that are going to serve as frequently used data structures in your program
(e.g., if your program created millions of instances of a particular class).

A common misperception of __slots__ is that it is an encapsulation tool that prevents
users from adding new attributes to instances. Although this is a side effect of using
slots, this was never the original purpose. Instead, __slots__ was always intended to
be an optimization tool.

8.4. Saving Memory When Creating a Large Number of Instances | 249

8.5. Encapsulating Names in a Class

Problem

You want to encapsulate “private” data on instances of a class, but are concerned about
Python’s lack of access control.

Solution

Rather than relying on language features to encapsulate data, Python programmers are
expected to observe certain naming conventions concerning the intended usage of data
and methods. The first convention is that any name that starts with a single leading
underscore (_) should always be assumed to be internal implementation. For example:

class A:
def __init__(self):
self._internal = 0 # An internal attribute
self.public = 1 # A public attribute

def public_method(self):

[N

A public method

[N

def _internal_method(self):

Python doesn’t actually prevent someone from accessing internal names. However, do-
ing so is considered impolite, and may result in fragile code. It should be noted, too,
that the use of the leading underscore is also used for module names and module-level
functions. For example, if you ever see a module name that starts with a leading un-
derscore (e.g., _socket), it’s internal implementation. Likewise, module-level functions
such as sys._getframe() should only be used with great caution.

You may also encounter the use of two leading underscores (__) on names within class
definitions. For example:
class B:
def __init__(self):
self.__private = 0
def __private_method(self):

def public_method(self):

self.__private_method()

250 | Chapter8: Classes and Objects

The use of double leading underscores causes the name to be mangled to something
else. Specifically, the private attributes in the preceding class get renamed to _B__pri
vateand _B__private_method, respectively. At this point, you might ask what purpose
such name mangling serves. The answer is inheritance—such attributes cannot be
overridden via inheritance. For example:

class C(B):
def __init__ (self):
super().__intt_ ()
self.__private = 1 # Does not override B.__private
Does not override B.__private_method()
def _ private_method(self):

Here, the private names __private and __private_method get renamed to _C__pri
vateand _C__private_method, which are different than the mangled names in the base
class B.

Discussion

The fact that there are two different conventions (single underscore versus double un-
derscore) for “private” attributes leads to the obvious question of which style you should
use. For most code, you should probably just make your nonpublic names start with a
single underscore. If, however, you know that your code will involve subclassing, and
there are internal attributes that should be hidden from subclasses, use the double un-
derscore instead.

It should also be noted that sometimes you may want to define a variable that clashes
with the name of a reserved word. For this, you should use a single trailing underscore.
For example:

lambda_ = 2.0 # Trailing _ to avoid clash with lambda keyword

The reason for not using a leading underscore here is that it avoids confusion about the
intended usage (i.e., the use of a leading underscore could be interpreted as a way to
avoid a name collision rather than as an indication that the value is private). Using a
single trailing underscore solves this problem.

8.6. Creating Managed Attributes

Problem

You want to add extra processing (e.g., type checking or validation) to the getting or
setting of an instance attribute.

8.6. Creating Managed Attributes | 251

Solution

A simple way to customize access to an attribute is to define it as a “property” For
example, this code defines a property that adds simple type checking to an attribute:

class Person:
def __init__(self, first_name):
self.first_name = first_name

Getter function

def first_name(self):
return self._first_name

Setter function

def first_name(self, value):
if not isinstance(value, str):
raise TypeError('Expected a string')
self._first_name = value

Deleter function (optional)

def first_name(self):
raise AttributeError("Can't delete attribute")
In the preceding code, there are three related methods, all of which must have the same
name. The first method is a getter function, and establishes first_name as being a
property. The other two methods attach optional setter and deleter functions to the
first_name property. It's important to stress that the @first_name.setter and
@first_name.deleter decorators won't be defined unless first_name was already es-
tablished as a property using @property.

A critical feature of a property is that it looks like a normal attribute, but access auto-
matically triggers the getter, setter, and deleter methods. For example:

>>> a = Person('Guido')

>>> a.first_name # Calls the getter
'Guido'

>>> a.first_name = 42 # Calls the setter

File "<stdin>", 1ine 1, in <module>
File "prop.py", line 14, in first_name
raise TypeError('Expected a string')
TypeError: Expected a string
>>> del a.first_name

File "<stdin>", 1ine 1, in <module>
AttributeError: can't delete attribute
>>>

252 | Chapter8: Classes and Objects

When implementing a property, the underlying data (if any) still needs to be stored
somewhere. Thus, in the get and set methods, you see direct manipulation of a
_first_name attribute, which is where the actual data lives. In addition, you may ask
why the __init__() method sets self.first_name instead of self._first_name. In
this example, the entire point of the property is to apply type checking when setting an
attribute. Thus, chances are you would also want such checking to take place during
initialization. By setting self. first_name, the set operation uses the setter method (as
opposed to bypassing it by accessing self._first_name).

Properties can also be defined for existing get and set methods. For example:

class Person:
def __init__(self, first_name):
self.set_first_name(first_name)

Getter function
def get_first_name(self):
return self._first_name

Setter function
def set_first_name(self, value):
if not isinstance(value, str):
raise TypeError('Expected a string')
self._first_name = value

Deleter function (optional)
def del_first_name(self):
raise AttributeError("Can't delete attribute")

Make a property from existing get/set methods
name = property(get_first_name, set_first_name, del_first_name)

Discussion

A property attribute is actually a collection of methods bundled together. If you inspect
a class with a property, you can find the raw methods in the fget, fset, and fdel
attributes of the property itself. For example:

>>> Person.first_name.fget

<function Person.first_name at 0x1006a60e0>
>>> Person.first_name.fset

<function Person.first_name at 0x1006a6170>
>>> Person.first_name.fdel

<function Person.first_name at 0x1006a62e0>
>>>

Normally, you wouldn’t call fget or fset directly, but they are triggered automatically
when the property is accessed.

8.6. Creating Managed Attributes | 253

Properties should only be used in cases where you actually need to perform extra pro-
cessing on attribute access. Sometimes programmers coming from languages such as
Java feel that all access should be handled by getters and setters, and that they should
write code like this:

class Person:
def __init__(self, first_name):
self.first_name = name

def first_name(self):
return self._first_name

def first_name(self, value):
self._first_name = value

Don’t write properties that don’t actually add anything extra like this. For one, it makes
your code more verbose and confusing to others. Second, it will make your program
run a lot slower. Lastly, it offers no real design benefit. Specifically, if you later decide
that extra processing needs to be added to the handling of an ordinary attribute, you
could promote it to a property without changing existing code. This is because the syntax
of code that accessed the attribute would remain unchanged.

Properties can also be a way to define computed attributes. These are attributes that are
not actually stored, but computed on demand. For example:

import math
class Circle:
def __init_ (self, radius):
self.radius = radius

def area(self):
return math.pil * self.radius ** 2

def perimeter(self):
return 2 * math.pi * self.radius
Here, the use of properties results in a very uniform instance interface in that radius,
area, and perimeter are all accessed as simple attributes, as opposed to a mix of simple
attributes and method calls. For example:

>>> ¢ = Circle(4.0)
>>> c.radius

4.0

>>> c.area # Notice lack of ()
50.26548245743669

>>> c.perimeter # Notice lack of ()

25.132741228718345

>>>

254 | (Chapter8: Classes and Objects

Although properties give you an elegant programming interface, sometimes you ac-
tually may want to directly use getter and setter functions. For example:

>>> p = Person('Guido')

>>> p.get_first_name()
'Guido'

>>> p.set_first_name('Larry')
>>>

This often arises in situations where Python code is being integrated into a larger in-
frastructure of systems or programs. For example, perhaps a Python class is going to be
plugged into a large distributed system based on remote procedure calls or distributed
objects. In such a setting, it may be much easier to work with an explicit get/set method
(as a normal method call) rather than a property that implicitly makes such calls.

Last, but not least, don’t write Python code that features a lot of repetitive property
definitions. For example:

class Person:
def __init__(self, first_name, last_name):
self.first_name = first_name
self.last_name = last_name

def first_name(self):
return self._first_name

def first_name(self, value):
if not isinstance(value, str):
raise TypeError('Expected a string')
self._first_name = value

Repeated property code, but for a different name (bad!)

def last_name(self):
return self._last_name

def last_name(self, value):
if not isinstance(value, str):
raise TypeError('Expected a string')
self._last_name = value

Code repetition leads to bloated, error prone, and ugly code. As it turns out, there are
much better ways to achieve the same thing using descriptors or closures. See Recipes
8.9 and 9.21.

8.6. (reating Managed Attributes | 255

8.7. Calling a Method on a Parent Class

Problem

You want to invoke a method in a parent class in place of a method that has been
overridden in a subclass.

Solution
To call a method in a parent (or superclass), use the super() function. For example:

class A:
def spam(self):
print('A.spam')

class B(A):
def spam(self):
print('B.spam')
super().spam() # Call parent spam()

A very common use of super () is in the handling of the __init__() method to make
sure that parents are properly initialized:

class A:
def __init__(self):
self.x = 0
class B(A):

def __init__(self):
super().__init__()
self.y = 1

Another common use of super () is in code that overrides any of Python’s special meth-
ods. For example:

class Proxy:
def __init__(self, obj):
self._obj = obj

Delegate attribute lookup to internal obj
def _ getattr__(self, name):
return getattr(self._obj, name)

Delegate attribute assignment
def _ setattr__(self, name, value):
if name.startswith('_'):
super().__setattr__(name, value) # Call original __setattr__
else:
setattr(self._obj, name, value)

256 | Chapter8: Classes and Objects

In this code, the implementation of __setattr__() includes a name check. If the
name starts with an underscore (_), it invokes the original implementation of
__setattr__() using super(). Otherwise, it delegates to the internally held object
self._obj. It looks a little funny, but super () works even though there is no explicit

base class listed.

Discussion

Correct use of the super() function is actually one of the most poorly understood
aspects of Python. Occasionally, you will see code written that directly calls a method

in a parent like this:

class Base:
def __init__ (self):
print('Base.__init__"')

class A(Base):
def __init_ (self):
Base.__init__ (self)
print('A.__init__")

Although this “works” for most code, it can lead to bizarre trouble in advanced code
involving multiple inheritance. For example, consider the following:

class Base:
def __init_ (self):
print('Base.__init__")

class A(Base):
def __init_ (self):
Base.__init__ (self)
print('A.__init__")

class B(Base):
def __init__(self):
Base.__init__(self)
print('B.__init__"')

class C(A,B):
def __init_ (self):
A.__init__(self)
B.__init__(self)
print('C.__init__")

If you run this code, you’ll see that the Base
shown here:

>>> ¢ = C()
Base.__init__
A.__init__
Base.__init__

.__init__() method gets invoked twice, as

8.7.Calling a Method ona Parent Class | 257

B.__init__
C.__init__
>>>

Perhaps double-invocation of Base.__init__() is harmless, but perhaps not. If, on the
other hand, you change the code to use super(), it all works:

class Base:
def __init__ (self):
print('Base.__init__")

class A(Base):
def __init__ (self):
super().__intt_ ()
print('A.__init__")

class B(Base):
def __init__(self):
super().__init__()
print('B.__init__"')

class C(A,B):
def __init__ (self):
super().__init_ () # Only one call to super() here
print('C.__init__")

When you use this new version, you'll find that each __init__() method only gets
called once:

>>> ¢ = C()
Base.__init__
B.__init__
A.__init__
C.__init__
>>>

To understand why it works, we need to step back for a minute and discuss how Python
implements inheritance. For every class that you define, Python computes what’s known

as a method resolution order (MRO) list. The MRO list is simply a linear ordering of
all the base classes. For example:

>>> C.__mro__

(<class '__main__.C'>, <class '__main__.A'>, <class
<class '__main__.Base's, <class 'object's)

>>>

__main__.B'>,

To implement inheritance, Python starts with the leftmost class and works its way left-
to-right through classes on the MRO list until it finds the first attribute match.

The actual determination of the MRO list itself is made using a technique known as C3
Linearization. Without getting too bogged down in the mathematics of it, it is actually
a merge sort of the MROs from the parent classes subject to three constraints:

258 | Chapter8: Classes and Objects

o Child classes get checked before parents
 Multiple parents get checked in the order listed.

o If there are two valid choices for the next class, pick the one from the first parent.

Honestly, all you really need to know is that the order of classes in the MRO list “makes
sense” for almost any class hierarchy you are going to define.

When you use the super () function, Python continues its search starting with the next
class on the MRO. As long as every redefined method consistently uses super() and
only calls it once, control will ultimately work its way through the entire MRO list and
each method will only be called once. This is why you dont get double calls to
Base.__init__() in the second example.

A somewhat surprising aspect of super() is that it doesn’t necessarily go to the direct
parent of a class next in the MRO and that you can even use it in a class with no direct
parent at all. For example, consider this class:

class A:
def spam(self):
print('A.spam')
super().spam()

If you try to use this class, you'll find that it's completely broken:

>>> a3 = A()
>>> a.spam()
A.spam

File "<stdin>", line 1, in <module>

File "<stdin>", 1ine 4, in spam
AttributeError: 'super' object has no attribute 'spam'
>>>

Yet, watch what happens if you start using the class with multiple inheritance:

>>> class B:
def spam(self):
print('B.spam')

>>> class C(A,B):
pass

>>> ¢ = C()

>>> c.spam()

A.spam

B.spam
>>>

8.7.Calling a Method on a Parent Class | 259

Here you see that the use of super().spam() in class A has, in fact, called the spam()
method in class B—a class that is completely unrelated to A! This is all explained by the
MRO of class C:

>>> C.__mro__

(<class '__main__.C'>, <class
<class 'object's)

>>>

__main__.A'>, <class '__main__.B'>,

Using super () in this manner is most common when defining mixin classes. See Recipes
8.13 and 8.18.

However, because super () might invoke a method that you're not expecting, there are
a few general rules of thumb you should try to follow. First, make sure that all methods
with the same name in an inheritance hierarchy have a compatible calling signature (i.e.,
same number of arguments, argument names). This ensures that super() won't get
tripped up if it tries to invoke a method on a class that’s not a direct parent. Second, it’s
usually a good idea to make sure that the topmost class provides an implementation of
the method so that the chain of lookups that occur along the MRO get terminated by
an actual method of some sort.

Use of super () is sometimes a source of debate in the Python community. However, all
things being equal, you should probably use it in modern code. Raymond Hettinger has
written an excellent blog post “Python’s super() Considered Super!” that has even more
examples and reasons why super () might be super-awesome.

8.8. Extending a Property in a Subclass

Problem

Within a subclass, you want to extend the functionality of a property defined in a parent
class.

Solution
Consider the following code, which defines a property:
class Person:
def __init__(self, name):
self.name = name

Getter function

def name(self):
return self._name

Setter function

260 | Chapter8: Classes and Objects

http://rhettinger.wordpress.com/2011/05/26/super-considered-super

def name(self, value):
if not isinstance(value, str):
raise TypeError('Expected a string')
self._name = value

Deleter function

def name(self):
raise AttributeError("Can't delete attribute")

Here is an example of a class that inherits from Person and extends the name property
with new functionality:

class SubPerson(Person):

def name(self):
print('Getting name')
return super().name

def name(self, value):
print('Setting name to', value)
super (SubPerson, SubPerson).name.__set__(self, value)

def name(self):
print('Deleting name')
super (SubPerson, SubPerson).name.__delete__ (self)

Here is an example of the new class in use:

>>> s = SubPerson('Guido')
Setting name to Guido

>>> s.name

Getting name

'Guido'

>>> s.name = 'lLarry'
Setting name to Larry

>>> s.name = 42

File "<stdin>", line 1, in <module>
File "example.py", line 16, in name
raise TypeError('Expected a string')
TypeError: Expected a string
>>>

If you only want to extend one of the methods of a property, use code such as the
following:

class SubPerson(Person):

def name(self):
print('Getting name')
return super().name

8.8. Extending a Property ina Subclass | 261

Or, alternatively, for just the setter, use this code:

class SubPerson(Person):

def name(self, value):
print('Setting name to', value)
super (SubPerson, SubPerson).name.__set__(self, value)

Discussion

Extending a property in a subclass introduces a number of very subtle problems related
to the fact that a property is defined as a collection of getter, setter, and deleter methods,
as opposed to just a single method. Thus, when extending a property, you need to figure
out if you will redefine all of the methods together or just one of the methods.

In the first example, all of the property methods are redefined together. Within each
method, super() is used to call the previous implementation. The use of super(Sub
Person, SubPerson).name.__set__(self, value) in the setter function is no mis-
take. To delegate to the previous implementation of the setter, control needs to pass
through the __set__() method of the previously defined name property. However, the
only way to get to this method is to access it as a class variable instead of an instance
variable. This is what happens with the super (SubPerson, SubPerson) operation.

If you only want to redefine one of the methods, it's not enough to use @property by
itself. For example, code like this doesn’t work:

class SubPerson(Person):
Doesn't work
def name(self):
print('Getting name')
return super().name

If you try the resulting code, you'll find that the setter function disappears entirely:

>>> s = SubPerson('Guido')

File "<stdin>", 1ine 1, in <module>
File "example.py", line 5, in __init__
self.name = name
AttributeError: can't set attribute
>>>

Instead, you should change the code to that shown in the solution:

class SubPerson(Person):

def name(self):
print('Getting name')
return super().name

262 | Chapter8: Classes and Objects

When you do this, all of the previously defined methods of the property are copied, and
the getter function is replaced. It now works as expected:

>>> s = SubPerson('Guido')
>>> s.name

Getting name

'Guido'

>>> s.name = 'lLarry'

>>> s.name

Getting name

'Larry’

>>> s.name = 42

File "<stdin>", 1ine 1, in <module>
File "example.py", line 16, in name
raise TypeError('Expected a string')
TypeError: Expected a string
>>>

In this particular solution, there is no way to replace the hardcoded class name Per
son with something more generic. If you don’t know which base class defined a property,
you should use the solution where all of the property methods are redefined and su
per () is used to pass control to the previous implementation.

It's worth noting that the first technique shown in this recipe can also be used to extend
a descriptor, as described in Recipe 8.9. For example:

A descriptor
class String:
def __init__(self, name):
self.name = name

def _ get_ (self, instance, cls):
if instance is None:
return self
return instance.__dict__[self.name]

def __set_ (self, instance, value):
if not isinstance(value, str):
raise TypeError('Expected a string')
instance.__dict__[self.name] = value

A class with a descriptor
class Person:
name = String('name')
def __init__(self, name):
self.name = name

Extending a descriptor with a property
class SubPerson(Person):

def name(self):

8.8. Extending a Property ina Subclass | 263

print('Getting name')
return super().name

def name(self, value):
print('Setting name to', value)
super(SubPerson, SubPerson).name.__set__ (self, value)

def name(self):
print('Deleting name')
super (SubPerson, SubPerson).name.__delete__ (self)
Finally, it's worth noting that by the time you read this, subclassing of setter and deleter
methods might be somewhat simplified. The solution shown will still work, but the bug
reported at Python’s issues page might resolve into a cleaner approach in a future Python
version.

8.9. Creating a New Kind of Class or Instance Attribute

Problem

You want to create a new kind of instance attribute type with some extra functionality,
such as type checking.

Solution

If you want to create an entirely new kind of instance attribute, define its functionality
in the form of a descriptor class. Here is an example:

Descriptor attribute for an integer type-checked attribute
class Integer:
def __init__(self, name):
self.name = name

def _ get_ (self, instance, cls):
if instance is None:
return self
else:
return instance.__dict_ [self.name]

def __set_ (self, instance, value):
if not isinstance(value, int):
raise TypeError('Expected an int')
instance.__dict__[self.name] = value

def __delete_ (self, instance):
del instance.__dict__[self.name]

264 | Chapter8: Classes and Objects

http://bugs.python.org/issue14965

A descriptor is a class that implements the three core attribute access operations (get,
set, and delete) in the form of __get__(),__set__(),and __delete__() special meth-
ods. These methods work by receiving an instance as input. The underlying dictionary
of the instance is then manipulated as appropriate.

To use a descriptor, instances of the descriptor are placed into a class definition as class
variables. For example:

class Point:
x = Integer('x')
y = Integer('y')
def __init_ (self, x, y):
self.x = x
self.y =y

When you do this, all access to the descriptor attributes (e.g., x or y) is captured by the
__get__(),__set__(),and __delete__() methods. For example:

>>> p = Point(2, 3)

>>> p.X # Calls Point.x.__get__(p,Point)
2

>>> p.y = 5 # Calls Point.y.__set__(p, 5)
>>> p.X = 2.3 # Calls Point.x.__set__(p, 2.3)

File "<stdin>", line 1, in <module>
File "descrip.py", line 12, in __set__
raise TypeError('Expected an int')
TypeError: Expected an int
>>>

Asinput, each method of a descriptor receives the instance being manipulated. To carry
out the requested operation, the underlying instance dictionary (the __dict__ attribute)

is manipulated as appropriate. The self.name attribute of the descriptor holds the dic-
tionary key being used to store the actual data in the instance dictionary.

Discussion

Descriptors provide the underlying magic for most of Python’s class features, including
@classmethod, @staticmethod, @property, and even the __slots__ specification.

By defining a descriptor, you can capture the core instance operations (get, set, delete)
at a very low level and completely customize what they do. This gives you great power,
and is one of the most important tools employed by the writers of advanced libraries
and frameworks.

One confusion with descriptors is that they can only be defined at the class level, not
on a per-instance basis. Thus, code like this will not work:

Does NOT work
class Point:

8.9. Creating a New Kind of Class or Instance Attribute | 265

def

__init__(self, x, y):

self.x = Integer('x") # No! Must be a class variable
self.y = Integer('y')

self.x = x

self.y =y

Also, the implementation of the __get__() method is trickier than it seems:

Descriptor attribute for an integer type-checked attribute
class Integer:

def

__get_ (self, instance, cls):
if instance is None:
return self
else:
return instance.__dict__ [self.name]

The reason __get__() looks somewhat complicated is to account for the distinction
between instance variables and class variables. If a descriptor is accessed as a class vari-
able, the instance argument is set to None. In this case, it is standard practice to simply
return the descriptor instance itself (although any kind of custom processing is also
allowed). For example:

>>> p = Point(2,3)
>>> p.X

2

Calls Point.x.__get__(p, Point)

>>> Point.x # Calls Point.x.__get__(None, Point)
<__main__.Integer object at 0x100671890>

>>>

Descriptors are often just one component of alarger programming framework involving
decorators or metaclasses. As such, their use may be hidden just barely out of sight. As
an example, here is some more advanced descriptor-based code involving a class
decorator:

Descriptor for a type-checked attribute
class Typed:

def

def

def

__init__(self, name, expected_type):
self.name = name
self.expected_type = expected_type

__get_ (self, instance, cls):
if instance is None:
return self
else:
return instance.__dict__ [self.name]

__set_ (self, instance, value):
if not isinstance(value, self.expected_type):

raise TypeError('Expected ' + str(self.expected_type))
instance.__dict__[self.name] = value

266

Chapter 8: Classes and Objects

def _ delete_ (self, instance):
del instance.__dict__[self.name]

Class decorator that applies it to selected attributes
def typeassert(**kwargs):
def decorate(cls):
for name, expected_type in kwargs.items():
Attach a Typed descriptor to the class
setattr(cls, name, Typed(name, expected_type))
return cls
return decorate

Example use
(name=str, shares=int, price=float)
class Stock:
def __init__(self, name, shares, price):
self.name = name
self.shares = shares
self.price = price
Finally, it should be stressed that you would probably not write a descriptor if you simply
want to customize the access of a single attribute of a specific class. For that, it’s easier
to use a property instead, as described in Recipe 8.6. Descriptors are more useful in
situations where there will be a lot of code reuse (i.e., you want to use the functionality
provided by the descriptor in hundreds of places in your code or provide it as a library
feature).

8.10. Using Lazily Computed Properties

Problem

You'd like to define a read-only attribute as a property that only gets computed on access.
However, once accessed, you'd like the value to be cached and not recomputed on each
access.

Solution

An efficient way to define a lazy attribute is through the use of a descriptor class, such
as the following:

class lazyproperty:
def __init__(self, func):
self.func = func

def _ get_ (self, instance, cls):
if instance is None:
return self
else:

8.10. Using Lazily Computed Properties | 267

value = self.func(instance)
setattr(instance, self.func.__name__, value)
return value

To utilize this code, you would use it in a class such as the following:

import math

class Circle:
def __init_ (self, radius):
self.radius = radius

def area(self):
print('Computing area')
return math.pil * self.radius ** 2

def perimeter(self):
print('Computing perimeter')
return 2 * math.pi * self.radius

Here is an interactive session that illustrates how it works:

>>> ¢ = Circle(4.0)
>>> c.radius

4.0

>>> c.area
Computing area
50.26548245743669
>>> C.area
50.26548245743669
>>> c.perimeter
Computing perimeter
25.132741228718345
>>> c.perimeter
25.132741228718345

>>>

Carefully observe that the messages “Computing area” and “Computing perimeter” only
appear once.

Discussion

In many cases, the whole point of having a lazily computed attribute is to improve
performance. For example, you avoid computing values unless you actually need them
somewhere. The solution shown does just this, but it exploits a subtle feature of de-
scriptors to do it in a highly efficient way.

As shown in other recipes (e.g., Recipe 8.9), when a descriptor is placed into a class
definition, its __get__(), __set__(), and __delete__() methods get triggered on at-
tribute access. However, if a descriptor only defines a __get__() method, it has a much

268 | Chapter8: Classes and Objects

weaker binding than usual. In particular, the __get__() method only firesif the attribute
being accessed is not in the underlying instance dictionary.

The lazyproperty class exploits this by having the __get__() method store the com-
puted value on the instance using the same name as the property itself. By doing this,
the value gets stored in the instance dictionary and disables further computation of the
property. You can observe this by digging a little deeper into the example:

>>> ¢ = Circle(4.0)

>>> # Get instance variables
>>> vars(c)

{'radius': 4.0}

>>> # Compute area and observe variables afterward
>>> c.area

Computing area

50.26548245743669

>>> vars(c)

{'area': 50.26548245743669, 'radius': 4.0}

>>> # Notice access doesn't invoke property anymore
>>> C.area
50.26548245743669

>>> # Delete the variable and see property trigger again
>>> del c.area

>>> vars(c)

{'radius': 4.0}

>>> c.area

Computing area

50.26548245743669

>>>

One possible downside to this recipe is that the computed value becomes mutable after
it’s created. For example:

>>> c.area
Computing area
50.26548245743669
>>> c.area = 25
>>> c.area

25

>>>
If that’s a concern, you can use a slightly less efficient implementation, like this:

def lazyproperty(func):
name = '_lazy_' + func.__name__

def lazy(self):
if hasattr(self, name):
return getattr(self, name)
else:

8.10. Using Lazily Computed Properties | 269

value = func(self)
setattr(self, name, value)
return value

return lazy

If you use this version, you'll find that set operations are not allowed. For example:

>>> ¢ = Circle(4.0)
>>> c.area
Computing area
50.26548245743669
>>> C.area
50.26548245743669
>>> c.area = 25

File "<stdin>", line 1, in <module>
AttributeError: can't set attribute
>>>
However, a disadvantage is that all get operations have to be routed through the prop-
erty’s getter function. This is less efficient than simply looking up the value in the in-
stance dictionary, as was done in the original solution.

For more information on properties and managed attributes, see Recipe 8.6. Descriptors
are described in Recipe 8.9.

8.11. Simplifying the Initialization of Data Structures

Problem

You are writing a lot of classes that serve as data structures, but you are getting tired of
writing highly repetitive and boilerplate __init__() functions.

Solution

You can often generalize the initialization of data structures into a single __init__()
function defined in a common base class. For example:

class Structure:
Class variable that specifies expected fields
_filelds= []
def __init__(self, *args):
if len(args) != len(self._fields):
raise TypeError('Expected {} arguments'.format(len(self._fields)))

Set the arguments
for name, value in zip(self._fields, args):
setattr(self, name, value)

270 | Chapter8: Classes and Objects

Example class definitions
if __pame__ == '__main__':
class Stock(Structure):

_filelds = ['name', 'shares', 'price']

class Point(Structure):
_filelds = ['x','y"]

class Circle(Structure):
_filelds = ['radius']
def area(self):
return math.pi * self.radius ** 2

If you use the resulting classes, you'll find that they are easy to construct. For example:

>>> s = Stock('ACME', 50, 91.1)
>>> p = Point(2, 3)

>>> ¢ = Circle(4.5)

>>> s2 = Stock('ACME', 50)

File "<stdin>", 1ine 1, in <module>
File "structure.py", line 6, in __init__
raise TypeError('Expected {} arguments'.format(len(self._fields)))
TypeError: Expected 3 arguments

Should you decide to support keyword arguments, there are several design options. One
choice is to map the keyword arguments so that they only correspond to the attribute
names specified in _fields. For example:

class Structure:
_filelds= []
def __init__(self, *args, **kwargs):
if len(args) > len(self._fields):
raise TypeError('Expected {} arguments'.format(len(self._fields)))

Set all of the positional arguments
for name, value in zip(self._fields, args):
setattr(self, name, value)

Set the remaining keyword arguments
for name in self._fields[len(args):]:
setattr(self, name, kwargs.pop(name))

Check for any remaining unknown arguments
if kwargs:
raise TypeError('Invalid argument(s): {}'.format(','.join(kwargs)))

Example use
if __pame__ == '__mailn__':
class Stock(Structure):
_filelds = ['name', 'shares', 'price']

s1 = Stock('ACME', 50, 91.1)

8.11. Simplifying the Initialization of Data Structures | 271

s2
s3

Stock('ACME', 50, price=91.1)
Stock('ACME', shares=50, price=91.1)

Another possible choice is to use keyword arguments as a means for adding additional
attributes to the structure not specified in _fields. For example:

class Structure:
Class variable that specifies expected fields
_filelds= []
def __init__(self, *args, **kwargs):
if len(args) != len(self._fields):
raise TypeError('Expected {} arguments'.format(len(self._fields)))

Set the arguments
for name, value in zip(self._fields, args):
setattr(self, name, value)

Set the additional arguments (if any)
extra_args = kwargs.keys() - self._fields
for name in extra_args:
setattr(self, name, kwargs.pop(name))
if kwargs:
raise TypeError('Duplicate values for {}'.format(','.join(kwargs)))

Example use
if __pame__ == '__main__":
class Stock(Structure):
_fields = ['name', 'shares', 'price']

sl = Stock('ACME', 50, 91.1)
s2 = Stock('ACME', 50, 91.1, date='8/2/2012")
Discussion

This technique of defining a general purpose __init__() method can be extremely
useful if you're ever writing a program built around a large number of small data struc-
tures. It leads to much less code than manually writing __init__() methods like this:

class Stock:
def __init__(self, name, shares, price):
self.name = name
self.shares = shares
self.price = price

class Point:
def __init__(self, x, y):
self.x = x
self.y =y

class Circle:
def __init__(self, radius):
self.radius = radius

272 | Chapter8: Classes and Objects

def area(self):
return math.pil * self.radius ** 2

One subtle aspect of the implementation concerns the mechanism used to set value
using the setattr() function. Instead of doing that, you might be inclined to directly
access the instance dictionary. For example:

class Structure:
Class variable that specifies expected fields
_fields= []
def __init__(self, *args):
if len(args) != len(self._fields):
raise TypeError('Expected {} arguments'.format(len(self._fields)))

Set the arguments (alternate)
self.__dict__.update(zip(self._fields,args))
Although this works, it’s often not safe to make assumptions about the implementation
of a subclass. If a subclass decided to use __slots__ or wrap a specific attribute with a
property (or descriptor), directly acccessing the instance dictionary would break. The
solution has been written to be as general purpose as possible and not to make any
assumptions about subclasses.

A potential downside of this technique is that it impacts documentation and help fea-
tures of IDEs. If a user asks for help on a specific class, the required arguments aren’t
described in the usual way. For example:

>>> help(Stock)
Help on class Stock in module __main__:

class Stock(Structure)
Methods inherited from Structure:

|
|
| __init__(self, *args, **kwargs)
|
>>>

Many of these problems can be fixed by either attaching or enforcing a type signature
in the __init__() function. See Recipe 9.16.

It should be noted that it is also possible to automatically initialize instance variables
using a utility function and a so-called “frame hack” For example:

def init_fromlocals(self):
import sys
locs = sys._getframe(1).f_locals
for k, v in locs.items():
if k != 'self':
setattr(self, k, v)

8.11. Simplifying the Initialization of Data Structures | 273

class Stock:
def __init__(self, name, shares, price):
init_fromlocals(self)
In this variation, the init_fromlocals() function uses sys._getframe() to peek at the
local variables of the calling method. If used as the first step of an __init__() method,
the local variables will be the same as the passed arguments and can be easily used to
set attributes with the same names. Although this approach avoids the problem of get-
ting the right calling signature in IDEs, it runs more than 50% slower than the solution
provided in the recipe, requires more typing, and involves more sophisticated magic
behind the scenes. If your code doesn’t need this extra power, often times the simpler
solution will work just fine.

8.12. Defining an Interface or Abstract Base Class

Problem

You want to define a class that serves as an interface or abstract base class from which
you can perform type checking and ensure that certain methods are implemented in
subclasses.

Solution
To define an abstract base class, use the abc module. For example:

from abc import ABCMeta, abstractmethod
class IStream(metaclass=ABCMeta):

def read(self, maxbytes=-1):
pass

def write(self, data):
pass

A central feature of an abstract base class is that it cannot be instantiated directly. For
example, if you try to do it, you'll get an error:

a = IStream() # TypeError: Can't instantiate abstract class
IStream with abstract methods read, write

Instead, an abstract base class is meant to be used as a base class for other classes that
are expected to implement the required methods. For example:

class SocketStream(IStream):
def read(self, maxbytes=-1):

def write(self, data):

274 | Chapter8: Classes and Objects

A major use of abstract base classes is in code that wants to enforce an expected pro-
gramming interface. For example, one way to view the IStream base class is as a high-
level specification for an interface that allows reading and writing of data. Code that
explicitly checks for this interface could be written as follows:

def serialize(obj, stream):

if not isinstance(stream, IStream):
raise TypeError('Expected an IStream')

You might think that this kind of type checking only works by subclassing the abstract
base class (ABC), but ABCs allow other classes to be registered as implementing the
required interface. For example, you can do this:

import io

Register the built-in I/0 classes as supporting our interface
IStream.register(io.IOBase)

Open a normal file and type check

f = open('foo.txt")

isinstance(f, IStream) # Returns True
It should be noted that @abstractmethod can also be applied to static methods, class
methods, and properties. You just need to make sure you apply it in the proper sequence
where @abstractmethod appears immediately before the function definition, as shown
here:

from abc import ABCMeta, abstractmethod

class A(metaclass=ABCMeta):

def name(self):
pass

def name(self, value):
pass

def methodi(cls):
pass

def method2():
pass

8.12. Defining an Interface or Abstract Base Class | 275

Discussion

Predefined abstract base classes are found in various places in the standard library. The
collections module defines a variety of ABCs related to containers and iterators (se-
quences, mappings, sets, etc.), the numbers library defines ABCs related to numeric
objects (integers, floats, rationals, etc.), and the 1o library defines ABCs related to I/O
handling.

You can use the predefined ABCs to perform more generalized kinds of type checking.
Here are some examples:

import collections

Check 1f x 1s a sequence
if isinstance(x, collections.Sequence):

Check i1f x is iterable
if isinstance(x, collections.Iterable):

Check i1f x has a size
if isinstance(x, collections.Sized):

Check if x i1s a mapping
if isinstance(x, collections.Mapping):

It should be noted that, as of this writing, certain library modules don’t make use of
these predefined ABCs as you might expect. For example:

from decimal import Decimal
import numbers

x = Decimal('3.4")

isinstance(x, numbers.Real) # Returns False
Even though the value 3.4 is technically a real number, it doesn’t type check that way
to help avoid inadvertent mixing of floating-point numbers and decimals. Thus, if you
use the ABC functionality, it is wise to carefully write tests that verify that the behavior
is as you intended.

Although ABCs facilitate type checking, it's not something that you should overuse in
a program. At its heart, Python is a dynamic language that gives you great flexibility.
Trying to enforce type constraints everywhere tends to result in code that is more com-
plicated than it needs to be. You should embrace Python’s flexibility.

276 | Chapter8: Classes and Objects

8.13. Implementing a Data Model or Type System

Problem

You want to define various kinds of data structures, but want to enforce constraints on
the values that are allowed to be assigned to certain attributes.

Solution

In this problem, you are basically faced with the task of placing checks or assertions on
the setting of certain instance attributes. To do this, you need to customize the setting
of attributes on a per-attribute basis. To do this, you should use descriptors.

The following code illustrates the use of descriptors to implement a system type and
value checking framework:

Base class. Uses a descriptor to set a value
class Descriptor:
def __init__(self, name=None, **opts):
self.name = name
for key, value in opts.items():
setattr(self, key, value)

def __set_ (self, instance, value):
instance.__dict__[self.name] = value

Descriptor for enforcing types
class Typed(Descriptor):
expected_type = type(None)

def __set__(self, instance, value):
if not isinstance(value, self.expected_type):
raise TypeError('expected ' + str(self.expected_type))
super().__set__(instance, value)

Descriptor for enforcing values
class Unsigned(Descriptor):
def __set_ (self, instance, value):
if value < 0:
raise ValueError('Expected >= 0')
super().__set__(instance, value)

class MaxSized(Descriptor):
def __init__(self, name=None, **opts):
if 'size' not in opts:
raise TypeError('missing size option')
super().__init__(name, **opts)

def __set__(self, instance, value):
if len(value) >= self.size:

8.13. Implementing a Data Model or Type System | 277

raise ValueError('size must be <
super().__set__(instance, value)

+ str(self.size))

These classes should be viewed as basic building blocks from which you construct a data
model or type system. Continuing, here is some code that implements some different
kinds of data:

class Integer(Typed):
expected_type = int

class UnsignedInteger(Integer, Unsigned):
pass

class Float(Typed):
expected_type = float

class UnsignedFloat(Float, Unsigned):
pass

class String(Typed):
expected_type = str

class SizedString(String, MaxSized):
pass

Using these type objects, it is now possible to define a class such as this:

class Stock:

Specify constraints

name = SizedString('name',size=8)

shares = UnsignedInteger('shares')

price = UnsignedFloat('price')

def __init__(self, name, shares, price):
self.name = name
self.shares = shares
self.price = price

With the constraints in place, you’ll find that assigning of attributes is now validated.
For example:

>>> s = Stock('ACME', 50, 91.1)
>>> s.name

'ACME'
>>> s.shares = 75
>>> s.shares = -10

File "<stdin>", 1ine 1, in <module>
File "example.py", line 17, in __set__
super().__set__(instance, value)
File "example.py", line 23, in __set__
raise ValueError('Expected >= 0')
ValueError: Expected >= 0
>>> s.price = 'a lot'

278 | Chapter8: Classes and Objects

File "<stdin>", line 1, in <module>
File "example.py", line 16, in __set__
raise TypeError('expected ' + str(self.expected_type))
TypeError: expected <class 'float's
>>> s.name = 'ABRACADABRA'

File "<stdin>", line 1, in <module>
File "example.py", line 17, in __set__
super().__set__(instance, value)
File "example.py", line 35, in __set__
raise ValueError('size must be < ' + str(self.size))
ValueError: size must be < 8

>>>

There are some techniques that can be used to simplify the specification of constraints
in classes. One approach is to use a class decorator, like this:

Class decorator to apply constraints
def check_attributes(**kwargs):
def decorate(cls):
for key, value in kwargs.items():
if isinstance(value, Descriptor):
value.name = key
setattr(cls, key, value)
else:
setattr(cls, key, value(key))
return cls
return decorate

Example
(name=SizedString(size=8),
shares=UnsignedInteger,
price=UnsignedFloat)
class Stock:
def __init__(self, name, shares, price):
self.name = name
self.shares = shares
self.price = price

Another approach to simplify the specification of constraints is to use a metaclass. For
example:

A metaclass that applies checking
class checkedmeta(type):
def _ new_ (cls, clsname, bases, methods):
Attach attribute names to the descriptors
for key, value in methods.items():
if isinstance(value, Descriptor):
value.name = key
return type.__new__(cls, clsname, bases, methods)

8.13. Implementing a Data Model or Type System | 279

Example
class Stock(metaclass=checkedmeta):
name = SizedString(size=8)
shares = UnsignedInteger()
price = UnsignedFloat()
def __init__(self, name, shares, price):
self.name = name
self.shares = shares
self.price = price

Discussion

This recipe involves a number of advanced techniques, including descriptors, mixin
classes, the use of super (), class decorators, and metaclasses. Covering the basics of all
those topics is beyond what can be covered here, but examples can be found in other
recipes (see Recipes 8.9, 8.18, 9.12, and 9.19). However, there are a number of subtle
points worth noting.

First, in the Descriptor base class, you will notice that there is a __set__() method,
but no corresponding __get__(). If a descriptor will do nothing more than extract an
identically named value from the underlying instance dictionary, defining __get__()
isunnecessary. In fact, defining __get__() will just make it run slower. Thus, this recipe
only focuses on the implementation of __set__().

The overall design of the various descriptor classes is based on mixin classes. For ex-
ample, the Unsigned and MaxSized classes are meant to be mixed with the other de-
scriptor classes derived from Typed. To handle a specific kind of data type, multiple
inheritance is used to combine the desired functionality.

You will also notice that all __init__() methods of the various descriptors have been
programmed to have an identical signature involving keyword arguments **opts. The
class for MaxSized looks for its required attribute in opts, but simply passes it along to
the Descriptor base class, which actually sets it. One tricky part about composing
classes like this (especially mixins), is that you don't always know how the classes are
going to be chained together or what super () will invoke. For this reason, you need to
make it work with any possible combination of classes.

The definitions of the various type classes such as Integer, Float, and String illustrate
a useful technique of using class variables to customize an implementation. The Ty
ped descriptor merely looks for an expected_type attribute that is provided by each of
those subclasses.

The use of a class decorator or metaclass is often useful for simplifying the specification
by the user. You will notice that in those examples, the user no longer has to type the
name of the attribute more than once. For example:

280 | Chapter8: Classes and Objects

Normal

class Point:
x = Integer('x"')
y = Integer('y')

Metaclass

class Point(metaclass=checkedmeta):
x = Integer()
y = Integer()

The code for the class decorator and metaclass simply scan the class dictionary looking

for descriptors. When found, they simply fill in the descriptor name based on the key
value.

Of all the approaches, the class decorator solution may provide the most flexibility and
sanity. For one, it does not rely on any advanced machinery, such as metaclasses. Second,
decoration is something that can easily be added or removed from a class definition as
desired. For example, within the decorator, there could be an option to simply omit the
added checking altogether. These might allow the checking to be something that could
be turned on or off depending on demand (maybe for debugging versus production).

As a final twist, a class decorator approach can also be used as a replacement for mixin
classes, multiple inheritance, and tricky use of the super() function. Here is an alter-
native formulation of this recipe that uses class decorators:

Base class. Uses a descriptor to set a value
class Descriptor:
def __init__(self, name=None, **opts):
self.name = name
for key, value in opts.items():
setattr(self, key, value)

def __set_ (self, instance, value):
instance.__dict__[self.name] = value

Decorator for applying type checking
def Typed(expected_type, cls=None):
if cls is None:
return lambda cls: Typed(expected_type, cls)

super_set = cls.__set__
def __set_ (self, instance, value):
if not isinstance(value, expected_type):
raise TypeError('expected ' + str(expected_type))
super_set(self, instance, value)
cls.__set_ = __set_
return cls

Decorator for unsigned values
def Unsigned(cls):
super_set = cls.__set__

8.13. Implementing a Data Model or Type System | 281

def __set__(self, instance, value):
if value < 0:
raise ValueError('Expected >= 0')
super_set(self, instance, value)
cls.__set_ = __set__
return cls

Decorator for allowing sized values
def MaxSized(cls):
super_init = cls.__init__
def __init__(self, name=None, **opts):
if 'size' not in opts:
raise TypeError('missing size option')
super_init(self, name, **opts)
cls.__init__ = __init__

super_set = cls.__set__
def _ set_ (self, instance, value):
if len(value) >= self.size:
raise ValueError('size must be <
super_set(self, instance, value)
cls.__set_ = __set__
return cls

+ str(self.size))

Specialized descriptors
(int)
class Integer(Descriptor):
pass

class UnsignedInteger(Integer):
pass

(float)
class Float(Descriptor):
pass

class UnsignedFloat(Float):
pass

(str)
class String(Descriptor):
pass

class SizedString(String):
pass
The classes defined in this alternative formulation work in exactly the same manner as
before (none of the earlier example code changes) except that everything runs much
faster. For example, a simple timing test of setting a typed attribute reveals that the class

282 | Chapter8: Classes and Objects

decorator approach runs almost 100% faster than the approach using mixins. Now aren’t
you glad you read all the way to the end?

8.14. Implementing Custom Containers

Problem

You want to implement a custom class that mimics the behavior of a common built-in
container type, such as a list or dictionary. However, youre not entirely sure what
methods need to be implemented to do it.

Solution

The collections library defines a variety of abstract base classes that are extremely
useful when implementing custom container classes. To illustrate, suppose you want
your class to support iteration. To do that, simply start by having it inherit from col
lections.Iterable, as follows:

import collections

class A(collections.Iterable):
pass
The special feature about inheriting from collections.Iterable is that it ensures you
implement all of the required special methods. If you don’t, you'll get an error upon
instantiation:

>>> a3 = A()

File "<stdin>", line 1, in <module>
TypeError: Can't instantiate abstract class A with abstract methods __iter__
>>>

To fix this error, simply give the class the required __iter__() method and implement
it as desired (see Recipes 4.2 and 4.7).

Other notable classes defined in collections include Sequence, MutableSequence,
Mapping, MutableMapping, Set,and MutableSet. Many of these classes form hierarchies
with increasing levels of functionality (e.g., one such hierarchy is Container, Itera
ble, Sized, Sequence, and MutableSequence). Again, simply instantiate any of these
classes to see what methods need to be implemented to make a custom container with
that behavior:

>>> import collections
>>> collections.Sequence()

File "<stdin>", line 1, in <module>
TypeError: Can't instantiate abstract class Sequence with abstract methods \

8.14. Implementing Custom Containers | 283

__getitem__, _ len__
>>>

Here is a simple example of a class that implements the preceding methods to create a
sequence where items are always stored in sorted order (it’s not a particularly efficient
implementation, but it illustrates the general idea):

import collections
import bisect

class SortedItems(collections.Sequence):
def __init__ (self, initial=None):
self._items = sorted(initial) if initial is None else []

Required sequence methods
def _ getitem__ (self, index):
return self._items[index]

def __len__(self):
return len(self._items)

Method for adding an item in the right location
def add(self, item):
bisect.insort(self._items, item)

Here’s an example of using this class:

>>> items = SortedItems([5, 1, 3])
>>> list(items)
[1, 3, 5]

>>> items[0]

1

>>> items[-1]

5

>>> {tems.add(2)
>>> list(items)
[1, 2, 3, 5]

>>> {tems.add(-10)
>>> list(items)
[-10, 1, 2, 3, 5]
>>> items[1:4]

[1, 2, 3]

>>> 3 in items
True

>>> len(items)

5

>>> for n in items:
e print(n)
-10

1

2

3

284 | Chapter8: Classes and Objects

5

>>>

As you can see, instances of SortedItems behave exactly like a normal sequence and
support all of the usual operations, including indexing, iteration, len(), containment
(the in operator), and even slicing.

As an aside, the bisect module used in this recipe is a convenient way to keep items in
a list sorted. The bisect.insort() inserts an item into a list so that the list remains in
order.

Discussion

Inheriting from one of the abstract base classes in collections ensures that your cus-
tom container implements all of the required methods expected of the container. How-
ever, this inheritance also facilitates type checking.

For example, your custom container will satisfy various type checks like this:

>>> items = SortedItems()

>>> import collections

>>> isinstance(items, collections.Iterable)
True

>>> isinstance(items, collections.Sequence)
True

>>> isinstance(items, collections.Container)
True

>>> isinstance(items, collections.Sized)
True

>>> isinstance(items, collections.Mapping)
False

>>>

Many of the abstract base classes in collections also provide default implementations
of common container methods. To illustrate, suppose you have a class that inherits from
collections.MutableSequence, like this:

class Items(collections.MutableSequence):
def __init__(self, initial=None):
self._items = list(initial) if initial is None else []

Required sequence methods

def __getitem__(self, index):
print('GCetting:', index)
return self._items[index]

def __setitem__(self, index, value):
print('Setting:', index, value)

self._items[index] = value

def __delitem__(self, index):

8.14. Implementing Custom Containers | 285

print('Deleting:', index)
del self._1items[index]

def insert(self, index, value):
print('Inserting:', index, value)
self._1items.insert(index, value)

def __len__ (self):
print('Len")
return len(self._items)

If you create an instance of I'tems, you'll find that it supports almost all of the core list
methods (e.g., append(), remove(), count(), etc.). These methods are implemented in
such a way that they only use the required ones. Here’s an interactive session that illus-
trates this:

>>> a = Items([1, 2, 3])
>>> len(a)

Len

3

>>> a.append(4)

Len

Inserting: 3 4

>>> a.append(2)

Len

Inserting: 4 2

>>> a.count(2)

Getting: 0

Getting:
Getting:
Getting:
Getting:
Getting:
2

>>> a.remove(3)
Getting: 0
Getting: 1
Getting: 2
Deleting: 2

>>>

v h WN R

This recipe only provides a brief glimpse into Python’s abstract class functionality. The
numbers module provides a similar collection of abstract classes related to numeric data
types. See Recipe 8.12 for more information about making your own abstract base
classes.

286 | Chapter8: Classes and Objects

8.15. Delegating Attribute Access

Problem

You want an instance to delegate attribute access to an internally held instance possibly
as an alternative to inheritance or in order to implement a proxy.

Solution

Simply stated, delegation is a programming pattern where the responsibility for imple-
menting a particular operation is handed off (i.e., delegated) to a different object. In its
simplest form, it often looks something like this:

class A:

def spam(self, x):
pass

def foo(self):

pass
class B:
def __init__(self):
self._a = A()

def spam(self, x):
Delegate to the internal self._a instance
return self._a.spam(x)

def foo(self):
Delegate to the internal self._a instance
return self._a.foo()

def bar(self):
pass
If there are only a couple of methods to delegate, writing code such as that just given is
easy enough. However, if there are many methods to delegate, an alternative approach
is to define the __getattr__() method, like this:
class A:

def spam(self, x):
pass

def foo(self):

pass
class B:
def __init__(self):
self._a = A()

8.15. Delegating Attribute Access | 287

def bar(self):
pass

Expose all of the methods defined on class A
def _ getattr__(self, name):
return getattr(self._a, name)

The __getattr__() method is kind of like a catch-all for attribute lookup. It's a method
that gets called if code tries to access an attribute that doesn’t exist. In the preceding
code, it would catch access to undefined methods on B and simply delegate them to A.
For example:

b = B()
b.bar() # Calls B.bar() (exists on B)
b.spam(42) # Calls B.__getattr__('spam') and delegates to A.spam

Another example of delegation is in the implementation of proxies. For example:

A proxy class that wraps around another object, but
exposes its public attributes

class Proxy:
def __init__ (self, obj):
self._obj = obj

Delegate attribute lookup to internal obj
def __getattr__(self, name):
print('getattr:', name)
return getattr(self._obj, name)

Delegate attribute assignment
def _ setattr__(self, name, value):
if name.startswith('_'):
super().__setattr__(name, value)
else:
print('setattr:', name, value)
setattr(self._obj, name, value)

Delegate attribute deletion
def _ delattr__(self, name):
if name.startswith('_'):
super().__delattr__(name)
else:
print('delattr:', name)
delattr(self._obj, name)

To use this proxy class, you simply wrap it around another instance. For example:

class Spam:
def __init__(self, x):
self.x = x
def bar(self, y):
print('Spam.bar:', self.x, y)

288 | (Chapter8: Classes and Objects

Create an instance
s = Spam(2)

Create a proxy around it
p = Proxy(s)

Access the proxy

print(p.x) # Outputs 2
p.bar(3) # Outputs "Spam.bar: 2 3"
p.x = 37 # Changes s.x to 37

By customizing the implementation of the attribute access methods, you could cus-
tomize the proxy to behave in different ways (e.g., logging access, only allowing read-
only access, etc.).

Discussion

Delegation is sometimes used as an alternative to inheritance. For example, instead of
writing code like this:

class A:
def spam(self, x):
print('A.spam', Xx)

def foo(self):
print('A.foo")

class B(A):
def spam(self, x):
print('B.spam')
super().spam(x)

def bar(self):
print('B.bar")

A solution involving delegation would be written as follows:

class A:
def spam(self, x):
print('A.spam', x)

def foo(self):
print('A.foo"')

class B:
def __init__ (self):
self._a = AQ)

def spam(self, x):
print('B.spam', x)
self._a.spam(x)

8.15. Delegating Attribute Access | 289

def bar(self):
print('B.bar")

def _ getattr__(self, name):
return getattr(self._a, name)
This use of delegation is often useful in situations where direct inheritance might not
make much sense or where you want to have more control of the relationship between
objects (e.g., only exposing certain methods, implementing interfaces, etc.).

When using delegation to implement proxies, there are a few additional details to note.
First,the__getattr__() methodisactuallya fallback method that only gets called when
an attribute is not found. Thus, when attributes of the proxy instance itself are accessed
(e.g., the _obj attribute), this method would not be triggered. Second, the __se
tattr__() and __delattr__() methods need a bit of extra logic added to separate
attributes from the proxy instance inself and attributes on the internal object _obj. A
common convention is for proxies to only delegate to attributes that don’t start with a
leading underscore (i.e., proxies only expose the “public” attributes of the held instance).

Itis also important to emphasize that the __getattr__() method usually does not apply
to most special methods that start and end with double underscores. For example, con-
sider this class:

class ListLike:
def __init__ (self):
self._items = []
def _ getattr__(self, name):
return getattr(self._items, name)

If you try to make a ListLike object, you’ll find that it supports the common list meth-
ods, such as append() and insert(). However, it does not support any of the operators
like len(), item lookup, and so forth. For example:

>>> a = ListLike()
>>> a.append(2)
>>> a.insert(0, 1)
>>> a.sort()

>>> len(a)

File "<stdin>", line 1, in <module>
TypeError: object of type 'ListLike' has no len()
>>> a[0]

File "<stdin>", 1ine 1, in <module>
TypeError: 'ListLike' object does not support indexing
>>>

To support the different operators, you have to manually delegate the associated special
methods yourself. For example:

290 | Chapter8: Classes and Objects

class ListLike:
def __init__ (self):
self._items = []
def _ getattr__(self, name):
return getattr(self._items, name)

Added special methods to support certain list operations
def __len__ (self):
return len(self._items)
def _ getitem__ (self, index):
return self._items[index]
def _ setitem_ (self, index, value):
self._items[index] = value
def _ delitem__(self, index):
del self._1items[index]
See Recipe 11.8 for another example of using delegation in the context of creating proxy

classes for remote procedure call.

8.16. Defining More Than One Constructor in a Class

Problem

You're writing a class, but you want users to be able to create instances in more than the
one way provided by __init__().

Solution

To define a class with more than one constructor, you should use a class method. Here
is a simple example:

import time

class Date:
Primary constructor
def __init__ (self, year, month, day):
self.year = year
self.month = month
self.day = day

Alternate constructor

def today(cls):
t = time.localtime()
return cls(t.tm_year, t.tm_mon, t.tm_mday)
To use the alternate constructor, you simply call it as a function, such as Date.to
day(). Here is an example:

8.16. Defining More Than One ConstructorinaClass | 291

[+
1l

Date(2012, 12, 21) # Primary
Date.today() # Alternate

o
I

Discussion

One of the primary uses of class methods is to define alternate constructors, as shown
in this recipe. A critical feature of a class method is that it receives the class as the first
argument (cls). You will notice that this class is used within the method to create and
return the final instance. It is extremely subtle, but this aspect of class methods makes
them work correctly with features such as inheritance. For example:

class NewDate(Date):
pass

c = Date.today() # Creates an instance of Date (cls=Date)
d = NewDate.today() # Creates an instance of NewDate (cls=NewDate)

When defining a class with multiple constructors, you should make the __init__()
function as simple as possible—doing nothing more than assigning attributes from
given values. Alternate constructors can then choose to perform advanced operations
if needed.

Instead of defining a separate class method, you might be inclined to implement the
__init__() method in a way that allows for different calling conventions. For example:

class Date:
def __init__(self, *args):
if len(args) == 0:
t = time.localtime()
args = (t.tm_year, t.tm_mon, t.tm_mday)
self.year, self.month, self.day = args

Although this technique works in certain cases, it often leads to code that is hard to
understand and difficult to maintain. For example, this implementation won’t show
useful help strings (with argument names). In addition, code that creates Date instances
will be less clear. Compare and contrast the following:

a
b

Date(2012, 12, 21) # Clear. A specific date.
Date() # 2?2 What does this do?

Class method version

c = Date.today() # Clear. Today's date.
As shown, the Date. today() invokes the regular Date.__init__() method by instan-
tiating a Date() with suitable year, month, and day arguments. If necessary, instances
can be created without ever invoking the __init__() method. This is described in the
next recipe.

292 | Chapter8: Classes and Objects

8.17. Creating an Instance Without Invoking init

Problem

You need to create an instance, but want to bypass the execution of the __init__()
method for some reason.

Solution

A bare uninitialized instance can be created by directly calling the __new__() method
of a class. For example, consider this class:

class Date:
def __init__(self, year, month, day):
self.year = year
self.month = month
self.day = day

Here’s how you can create a Date instance without invoking __init__():

>>> d = Date.__new__(Date)

>>> d

<__mailn__.Date object at 0x1006716d0>
>>> d.year

File "<stdin>", line 1, in <module>
AttributeError: 'Date' object has no attribute 'year'
>>>

Asyou can see, the resulting instance is uninitialized. Thus, it is now your responsibility
to set the appropriate instance variables. For example:
>>> data = {'year':2012, 'month':8, 'day':29}

>>> for key, value in data.items():
setattr(d, key, value)

>>> d.year
2012

>>> d.month
8

>>>

Discussion

The problem of bypassing __init__() sometimes arises when instances are being cre-
ated in a nonstandard way such as when deserializing data or in the implementation of
a class method that’s been defined as an alternate constructor. For example, on the Date
class shown, someone might define an alternate constructor today() as follows:

8.17. (reating an Instance Without Invoking init | 293

from time import localtime

class Date:
def __init__(self, year, month, day):
self.year = year
self.month = month
self.day = day

def today(cls):
d = cls.__new__(cls)
t = localtime()
d.year = t.tm_year
d.month = t.tm_mon
d.day = t.tm_mday
return d
Similarly, suppose you are deserializing JSON data and, as a result, produce a dictionary

like this:
data = { 'year': 2012, 'month': 8, 'day': 29 }

If you want to turn this into a Date instance, simply use the technique shown in the
solution.

When creating instances in a nonstandard way, it’s usually best to not make too many
assumptions about their implementation. As such, you generally don’t want to write
code that directly manipulates the underlying instance dictionary __dict__ unless you
know it’s guaranteed to be defined. Otherwise, the code will break if the class uses
__slots__, properties, descriptors, or other advanced techniques. By using se
tattr() to set the values, your code will be as general purpose as possible.

8.18. Extending Classes with Mixins

Problem

You have a collection of generally useful methods that you would like to make available
for extending the functionality of other class definitions. However, the classes where
the methods might be added aren’t necessarily related to one another via inheritance.
Thus, you can't just attach the methods to a common base class.

Solution

The problem addressed by this recipe often arises in code where one is interested in the
issue of class customization. For example, maybe a library provides a basic set of classes
along with a set of optional customizations that can be applied if desired by the user.

294 | Chapter8: Classes and Objects

To illustrate, suppose you have an interest in adding various customizations (e.g., log-
ging, set-once, type checking, etc.) to mapping objects. Here are a set of mixin classes
that do that:

class LoggedMappingMixin:

T

Add logging to get/set/delete operations for debugging.

T

_slots__ = ()

def __getitem__(self, key):
print('Getting ' + str(key))
return super().__getitem__(key)

def __setitem__(self, key, value):
print('Setting {} = {!r}'.format(key, value))
return super().__setitem__(key, value)

def __delitem__(self, key):
print('Deleting ' + str(key))
return super().__delitem__(key)

class SetOnceMappingMixin:

T

Only allow a key to be set once.
_slots__ = ()
def __setitem__(self, key, value):
if key in self:
raise KeyError(str(key) + ' already set')
return super().__setitem__(key, value)

class StringKeysMappingMixin:

T

Restrict keys to strings only
_slots__ = ()
def _ setitem__(self, key, value):
if not isinstance(key, str):
raise TypeError('keys must be strings')
return super().__setitem__(key, value)

These classes, by themselves, are useless. In fact, if you instantiate any one of them, it

does nothing useful at all (other than generate exceptions). Instead, they are supposed
to be mixed with other mapping classes through multiple inheritance. For example:

>>> class LoggedDict(LoggedMappingMixin, dict):
pass

>>> d = LoggedDict()
>>> d['x'] = 23
Setting x = 23

8.18. Extending Classes with Mixins | 295

>>> d['x']
Getting x

23

>>> del d['x']
Deleting x

>>> from collections import defaultdict

>>> class SetOnceDefaultDict(SetOnceMappingMixin, defaultdict):
.ee pass

>>> d = SetOnceDefaultDict(list)

>>> d['x'].append(2)

>>> d['y'].append(3)

>>> d['x'].append(10)

>>> d['x'] = 23

File "<stdin>", 1ine 1, in <module>
File "mixin.py", line 24, in __setitem__
raise KeyError(str(key) + ' already set')
KeyError: 'x already set'

>>> from collections import OrderedDict
>>> class StringOrderedDict(StringKeysMappingMixin,

. SetOnceMappingMixin,
v OrderedDict):
cee pass

cee

>>> d = StringOrderedDict()
>>> d['x'] = 23
>>> d[42] = 10

File "<stdin>", line 1, in <module>

File "mixin.py", line 45, in __setitem__
TypeError: keys must be strings
>>> d['x'] = 42

File "<stdin>", line 1, in <module>
File "mixin.py", line 46, in __setitem__
_slots__ = ()
File "mixin.py", line 24, in
if key in self:
KeyError: 'x already set'
>>>

_setitem__

In the example, you will notice that the mixins are combined with other existing classes
(e.g., dict, defaultdict, OrderedDict), and even one another. When combined, the
classes all work together to provide the desired functionality.

296 | Chapter8: Classes and Objects

Discussion

Mixin classes appear in various places in the standard library, mostly as a means for
extending the functionality of other classes similar to as shown. They are also one of
the main uses of multiple inheritance. For instance, if you are writing network code,
you can often use the ThreadingMixIn from the socketserver module to add thread
support to other network-related classes. For example, here is a multithreaded XML-
RPC server:

from xmlrpc.server import SimpleXMLRPCServer
from socketserver import ThreadingMixIn
class ThreadedXMLRPCServer(ThreadingMixIn, SimpleXMLRPCServer):
pass
It is also common to find mixins defined in large libraries and frameworks—again,
typically to enhance the functionality of existing classes with optional features in some
way.

There is a rich history surrounding the theory of mixin classes. However, rather than
getting into all of the details, there are a few important implementation details to keep
in mind.

First, mixin classes are never meant to be instantiated directly. For example, none of the
classes in this recipe work by themselves. They have to be mixed with another class that
implements the required mapping functionality. Similarly, the ThreadingMixIn from
the socketserver library has to be mixed with an appropriate server class—it can't be
used all by itself.

Second, mixin classes typically have no state of their own. This means there is no
__init__() method and no instance variables. In this recipe, the specification of
__slots__ = () is meant to serve as a strong hint that the mixin classes do not have
their own instance data.

If you are thinking about defining a mixin class that has an __init__() method and
instance variables, be aware that there is significant peril associated with the fact that
the class doesn’t know anything about the other classes it’s going to be mixed with. Thus,
any instance variables created would have to be named in a way that avoids name clashes.
In addition, the __init__() method would have to be programmed in a way that prop-
erly invokes the __init__() method of other classes that are mixed in. In general, this
is difficult to implement since you know nothing about the argument signatures of the
other classes. At the very least, you would have to implement something very general
using *arg, **kwargs. Ifthe __init__() of the mixin class took any arguments of its
own, those arguments should be specified by keyword only and named in such a way
to avoid name collisions with other arguments. Here is one possible implementation of
a mixin defining an __init__() and accepting a keyword argument:

8.18. Extending Classes with Mixins | 297

class RestrictKeysMixin:
def __init__(self, *args, _restrict_key_type, **kwargs):
self.__restrict_key_type = _restrict_key_type
super().__init__(*args, **kwargs)

def __setitem__(self, key, value):
if not isinstance(key, self.__restrict_key type):
raise TypeError('Keys must be ' + str(self.__restrict_key_type))
super().__setitem__(key, value)

Here is an example that shows how this class might be used:

>>> class RDict(RestrictKeysMixin, dict):

pass
>>> d = RDict(_restrict_key_type=str)
>>> e = RDict([('name','Dave'), ('n',37)], _restrict_key_type=str)
>>> f = RDict(name='Dave', n=37, _restrict_key_type=str)
>>> f
{'n': 37, 'name': 'Dave'}

>>> f[42] = 10

File "<stdin>", 1ine 1, in <module>
File "mixin.py", line 83, in __setitem__
raise TypeError('Keys must be ' + str(self.__restrict_key_type))
TypeError: Keys must be <class 'str's
>>>
In this example, you’ll notice that initializing an RDict() still takes the arguments
understood by dict(). However, there is an extra keyword argument

restrict_key_type that is provided to the mixin class.

Finally, use of the super() function is an essential and critical part of writing mixin
classes. In the solution, the classes redefine certain critical methods, such as
__getitem__() and __setitem__(). However, they also need to call the original im-
plementation of those methods. Using super () delegates to the next class on the method
resolution order (MRO). This aspect of the recipe, however, is not obvious to novices,
because super() is being used in classes that have no parent (at first glance, it might
look like an error). However, in a class definition such as this:
class LoggedDict(LoggedMappingMixin, dict):
pass

the use of super() in LoggedMappingMixin delegates to the next class over in the mul-
tiple inheritance list. That is, a call such as super().__getitem__() in LoggedMapping
Mixin actually steps over and invokes dict.__getitem__(). Without this behavior, the
mixin class wouldn’t work at all.

An alternative implementation of mixins involves the use of class decorators. For ex-
ample, consider this code:

298 | Chapter8: Classes and Objects

def LoggedMapping(cls):
cls_getitem = cls.__getitem__
cls_setitem = cls.__setitem__
cls_delitem = cls.__delitem__

def __getitem__(self, key):
print('Getting ' + str(key))
return cls_getitem(self, key)

def __setitem__(self, key, value):
print('Setting {} = {!r}'.format(key, value))
return cls_setitem(self, key, value)

def __delitem__(self, key):
print('Deleting ' + str(key))
return cls_delitem(self, key)

cls.__getitem__ = _ getitem__
cls.__setitem__ = _ setitem__
cls.__delitem__ = _ delitem__

return cls

This function is applied as a decorator to a class definition. For example:

class LoggedDict(dict):
pass

If you try it, you'll find that you get the same behavior, but multiple inheritance is no
longer involved. Instead, the decorator has simply performed a bit of surgery on the
class definition to replace certain methods. Further details about class decorators can
be found in Recipe 9.12.

See Recipe 8.13 for an advanced recipe involving both mixins and class decorators.

8.19. Implementing Stateful Objects or State Machines

Problem

You want to implement a state machine or an object that operates in a number of dif-
ferent states, but don’t want to litter your code with a lot of conditionals.

Solution

In certain applications, you might have objects that operate differently according to
some kind of internal state. For example, consider a simple class representing a
connection:

class Connection:
def __init__(self):

8.19. Implementing Stateful Objects or State Machines | 299

self.state = 'CLOSED'

def read(self):
if self.state != 'OPEN':
raise RuntimeError('Not open')
print('reading')

def write(self, data):
if self.state != 'OPEN':
raise RuntimeError('Not open')
print('writing')

def open(self):
if self.state == 'OPEN':
raise RuntimeError('Already open')
self.state = 'OPEN'

def close(self):
if self.state == 'CLOSED':
raise RuntimeError('Already closed')
self.state = 'CLOSED'

This implementation presents a couple of difficulties. First, the code is complicated by
the introduction of many conditional checks for the state. Second, the performance is

degraded because common operations (e.g., read() and write()) always check the state
before proceeding.

A more elegant approach is to encode each operational state as a separate class and
arrange for the Connection class to delegate to the state class. For example:

class Connection:
def __init__ (self):
self.new_state(ClosedConnectionState)

def new_state(self, newstate):
self._state = newstate

Delegate to the state class
def read(self):
return self._state.read(self)

def write(self, data):
return self._state.write(self, data)

def open(self):
return self._state.open(self)

def close(self):
return self._state.close(self)

Connection state base class
class ConnectionState:

300 | Chapter8: Classes and Objects

@staticmethod
def read(conn):
raise NotImplementedError()

@staticmethod
def write(conn, data):
raise NotImplementedError()

@staticmethod
def open(conn):
raise NotImplementedError()

@staticmethod
def close(conn):
raise NotImplementedError()

Implementation of different states
class ClosedConnectionState(ConnectionState):
@staticmethod
def read(conn):
raise RuntimeError('Not open')

@staticmethod
def write(conn, data):
raise RuntimeError('Not open')

@staticmethod
def open(conn):
conn.new_state(OpenConnectionState)

@staticmethod
def close(conn):
raise RuntimeError('Already closed')

class OpenConnectionState(ConnectionState):
@staticmethod
def read(conn):
print('reading')

@staticmethod
def write(conn, data):
print('writing')

@staticmethod
def open(conn):
raise RuntimeError('Already open')

@staticmethod
def close(conn):
conn.new_state(ClosedConnectionState)

Here is an interactive session that illustrates the use of these classes:

8.19. Implementing Stateful Objects or State Machines | 301

>>> ¢ = Connection()

>>> c._state

<class '__main__.ClosedConnectionState'>
>>> c.read()

File "<stdin>", line 1, in <module>
File "example.py", line 10, in read
return self._state.read(self)
File "example.py", line 43, in read
raise RuntimeError('Not open')
RuntimeError: Not open
>>> c.open()
>>> C._state

<class '__main__.OpenConnectionState'>
>>> c.read()

reading

>>> c.write('hello')

writing

>>> c.close()

>>> c._state

<class '__main__.ClosedConnectionState'>
>>>

Discussion

Writing code that features a large set of complicated conditionals and intertwined states
is hard to maintain and explain. The solution presented here avoids that by splitting the
individual states into their own classes.

It might look a little weird, but each state is implemented by a class with static methods,
each of which take an instance of Connection as the first argument. This design is based
on a decision to not store any instance data in the different state classes themselves.
Instead, all instance data should be stored on the Connection instance. The grouping
of states under a common base class is mostly there to help organize the code and to
ensure that the proper methods get implemented. The NotImplementedError exception
raised in base class methods is just there to make sure that subclasses provide an im-
plementation of the required methods. As an alternative, you might consider the use of
an abstract base class, as described in Recipe 8.12.

An alternative implementation technique concerns direct manipulation of the
__class__ attribute of instances. Consider this code:
class Connection:

def __init_ (self):
self.new_state(ClosedConnection)

def new_state(self, newstate):
self.__class__ = newstate

def read(self):

302 | Chapter8: Classes and Objects

raise NotImplementedError()

def write(self, data):
raise NotImplementedError()

def open(self):
raise NotImplementedError()

def close(self):
raise NotImplementedError()

class ClosedConnection(Connection):
def read(self):
raise RuntimeError('Not open')

def write(self, data):
raise RuntimeError('Not open')

def open(self):
self.new_state(OpenConnection)

def close(self):
raise RuntimeError('Already closed')

class OpenConnection(Connection):
def read(self):
print('reading')

def write(self, data):
print('writing')

def open(self):
raise RuntimeError('Already open')

def close(self):
self.new_state(ClosedConnection)

The main feature of this implementation is that it eliminates an extra level of indirection.
Instead of having separate Connection and ConnectionState classes, the two classes
are merged together into one. As the state changes, the instance will change its type, as
shown here:

>>> ¢ = Connection()

>>> C

<__main__.ClosedConnection object at 0x1006718d0>
>>> c.read()

File "<stdin>", 1ine 1, in <module>
File "state.py", line 15, in read
raise RuntimeError('Not open')
RuntimeError: Not open

>>> c.open()

8.19. Implementing Stateful Objects or State Machines | 303

>>> C

<__mailn__.OpenConnection object at 0x1006718d0>
>>> c.read()

reading

>>> c.close()

>>> C

<__main__.ClosedConnection object at 0x1006718d0>

>>>

Object-oriented purists might be offended by the idea of simply changing the instance
__class__ attribute. However, it’s technically allowed. Also, it might result in slightly
faster code since all of the methods on the connection no longer involve an extra dele-
gation step.)

Finally, either technique is useful in implementing more complicated state machines—
especially in code that might otherwise feature large if -elif-else blocks. For example:

Original implementation
class State:
def __init__ (self):
self.state = 'A'
def action(self, x):
if state == 'A':
Action for A

state = 'B'
elif state == 'B':
Action for B

state = 'C'
elif state == 'C':
Action for C

state = 'A'

Alternative implementation
class State:
def __init__ (self):
self.new_state(State_A)

def new_state(self, state):
self.__class__ = state

def action(self, x):
raise NotImplementedError()

class State_A(State):
def action(self, x):
Action for A

self.new_state(State_B)

304 | Chapter8: Classes and Objects

class State_B(State):
def action(self, x):
Action for B

self.new_state(State_C)

class State_C(State):
def action(self, x):
Action for C

self.new_state(State_A)

This recipe is loosely based on the state design pattern found in Design Patterns: Ele-
ments of Reusable Object-Oriented Software by Erich Gamma, Richard Helm, Ralph
Johnson, and John Vlissides (Addison-Wesley, 1995).

8.20. Calling a Method on an Object Given the Name As a
String

Problem

You have the name of a method that you want to call on an object stored in a string and
you want to execute the method.

Solution
For simple cases, you might use getattr(), like this:

import math

class Point:
def __init_ (self, x, y):
self.x = x
self.y =y

def __repr__(self):
return 'Point({!r:},{!r:})"'.format(self.x, self.y)

def distance(self, x, y):
return math.hypot(self.x - x, self.y - y)

p = Point(2, 3)
d = getattr(p, 'distance')(0, 0) # Calls p.distance(0, 0)

An alternative approach is to use operator.methodcaller (). For example:

import operator
operator.methodcaller('distance', 0, 0)(p)

8.20. Calling a Method on an Object Given the Name Asa String | 305

operator.methodcaller () may be useful if you want to look up a method by name and
supply the same arguments over and over again. For instance, if you need to sort an
entire list of points:

points = [
Point(1, 2),
Point(3, 0),
Point(10, -3),
Point(-5, -7),
Point(-1, 8),
Point(3, 2)

1

Sort by distance from origin (0, 0)
points.sort(key=operator.methodcaller('distance', 0, 0))

Discussion

Calling a method is actually two separate steps involving an attribute lookup and a
function call. Therefore, to call a method, you simply look up the attribute using get
attr(), as for any other attribute. To invoke the result as a method, simply treat the
result of the lookup as a function.

operator.methodcaller() creates a callable object, but also fixes any arguments that
are going to be supplied to the method. All that you need to do is provide the appropriate
self argument. For example:

>>> p = Point(3, 4)

>>> d = operator.methodcaller('distance', 0, 0)

>>> d(p)

5.0

>>>
Invoking methods using names contained in strings is somewhat common in code that
emulates case statements or variants of the visitor pattern. See the next recipe for a more
advanced example.

8.21. Implementing the Visitor Pattern

Problem

You need to write code that processes or navigates through a complicated data structure
consisting of many different kinds of objects, each of which needs to be handled in a
different way. For example, walking through a tree structure and performing different
actions depending on what kind of tree nodes are encountered.

306 | Chapter8: Classes and Objects

Solution

The problem addressed by this recipe is one that often arises in programs that build
data structures consisting of a large number of different kinds of objects. To illustrate,
suppose you are trying to write a program that represents mathematical expressions.
To do that, the program might employ a number of classes, like this:

class Node:
pass

class UnaryOperator(Node):
def __init_ (self, operand):
self.operand = operand

class BinaryOperator(Node):
def __init__(self, left, right):
self.left = left
self.right = right

class Add(BinaryOperator):
pass

class Sub(BinaryOperator):
pass

class Mul(BinaryOperator):
pass

class Div(BinaryOperator):
pass

class Negate(UnaryOperator):
pass

class Number(Node):
def __init__ (self, value):
self.value = value

These classes would then be used to build up nested data structures, like this:

Representation of 1 + 2 * (3 -4) / 5
t1 = Sub(Number(3), Number(4))

t2 = Mul(Number(2), t1)

t3 = Div(t2, Number(5))

t4 = Add(Number(1), t3)

The problem is not the creation of such structures, but in writing code that processes
them later. For example, given such an expression, a program might want to do any
number of things (e.g., produce output, generate instructions, perform translation, etc.).

To enable general-purpose processing, a common solution is to implement the so-called
“visitor pattern” using a class similar to this:

8.21. Implementing the Visitor Pattern | 307

class NodeVisitor:
def visit(self, node):
methname = 'visit_
meth = getattr(self, methname,
if meth is None:
meth = self.generic_visit
return meth(node)

def generic_visit(self, node):

+ type(node).__name__

None)

raise RuntimeError('No {} method'.format('visit_' + type(node).__name__))

To use this class, a programmer inherits from it and implements various methods of the
form visit_Name(), where Name is substituted with the node type. For example, if you
want to evaluate the expression, you could write this:

class Evaluator(NodeVisitor):
def visit_Number(self, node):
return node.value

def visit_Add(self, node):
return self.visit(node.left) +

def visit_Sub(self, node):
return self.visit(node.left) -

def visit_Mul(self, node):
return self.visit(node.left) *

def visit_Div(self, node):
return self.visit(node.left) /

def visit_Negate(self, node):
return -node.operand

self.visit(node.

self.visit(node.

self.visit(node.

self.visit(node.

right)

right)

right)

right)

Here is an example of how you would use this class using the previously generated

expression:

>>> e = Evaluator()
>>> e.visit(t4)
0.6

>>>

As a completely different example, here is a class that translates an expression into

operations on a simple stack machine:

class StackCode(NodeVisitor):
def generate_code(self, node):
self.instructions = []
self.visit(node)
return self.instructions

def visit_Number(self, node):

self.instructions.append(('PUSH', node.value))

308 | Chapter8: Classes and Objects

def binop(self, node, instruction):
self.visit(node.left)
self.visit(node.right)
self.instructions.append((instruction,))

def visit_Add(self, node):
self.binop(node, 'ADD')

def visit_Sub(self, node):
self.binop(node, 'SUB')

def visit_Mul(self, node):
self.binop(node, 'MUL')

def visit_Div(self, node):
self.binop(node, 'DIV')

def unaryop(self, node, instruction):
self.visit(node.operand)
self.instructions.append((instruction,))

def visit_Negate(self, node):
self.unaryop(node, 'NEG')

Here is an example of this class in action:

>>> s = StackCode()

>>> s.generate_code(t4)

[('PUSH', 1), ('PUSH', 2), ('PUSH', 3), ('PUSH', 4), ('SuB',),
('MUL',), ('PUSH', 5), ('DIV',), ('ADD',)]

>>>

Discussion

There are really two key ideas in this recipe. The first is a design strategy where code
that manipulates a complicated data structure is decoupled from the data structure itself.
That is, in this recipe, none of the various Node classes provide any implementation that
does anything with the data. Instead, all of the data manipulation is carried out by
specific implementations of the separate NodeVisitor class. This separation makes the
code extremely general purpose.

The second major idea of this recipe is in the implementation of the visitor class itself.
In the visitor, you want to dispatch to a different handling method based on some value
such as the node type. In a naive implementation, you might be inclined to write a huge
if statement, like this:

class NodeVisitor:
def visit(self, node):
nodetype = type(node).__name__
if nodetype == 'Number':

8.21. Implementing the Visitor Pattern | 309

return self.visit_Number(node)
elif nodetype == 'Add':

return self.visit_Add(node)
elif nodetype == 'Sub':

return self.visit_Sub(node)

However, it quickly becomes apparent that you don’t really want to take that approach.
Aside from being incredibly verbose, it runs slowly, and it’s hard to maintain if you ever
add or change the kind of nodes being handled. Instead, it's much better to play a little
trick where you form the name of a method and go fetch it with the getattr() function,
asshown. Thegeneric_visit() methodin thesolutionisa fallback should no matching
handler method be found. In this recipe, it raises an exception to alert the programmer
that an unexpected node type was encountered.

Within each visitor class, it is common for calculations to be driven by recursive calls
to the visit() method. For example:

class Evaluator(NodeVisitor):

def visit_Add(self, node):
return self.visit(node.left) + self.visit(node.right)
This recursion is what makes the visitor class traverse the entire data structure. Essen-
tially, you keep calling visit() until you reach some sort of terminal node, such as
Number in the example. The exact order of the recursion and other operations depend
entirely on the application.

It should be noted that this particular technique of dispatching to a method is also a
common way to emulate the behavior of switch or case statements from other languages.
For example, if you are writing an HTTP framework, you might have classes that do a
similar kind of dispatch:
class HTTPHandler:
def handle(self, request):

methname = 'do_' + request.request_method
getattr(self, methname)(request)

def do_GET(self, request):

def do_POST(self, request):

def do_HEAD(self, request):
One weakness of the visitor pattern is its heavy reliance on recursion. If you try to apply
it to a deeply nested structure, it's possible that you will hit Python’s recursion depth
limit (see sys.getrecursionlimit()). To avoid this problem, you can make certain

choices in your data structures. For example, you can use normal Python lists instead
of linked lists or try to aggregate more data in each node to make the data more shallow.

310 | Chapter8: Classes and Objects

You can also try to employ nonrecursive traversal algorithms using generators or iter-
ators as discussed in Recipe 8.22.

Use of the visitor pattern is extremely common in programs related to parsing and
compiling. One notable implementation can be found in Python’s own ast module. In
addition to allowing traversal of tree structures, it provides a variation that allows a data
structure to be rewritten or transformed as it is traversed (e.g., nodes added or removed).
Look at the source for ast for more details. Recipe 9.24 shows an example of using the
ast module to process Python source code.

8.22. Implementing the Visitor Pattern Without Recursion

Problem

You're writing code that navigates through a deeply nested tree structure using the visitor
pattern, but it blows up due to exceeding the recursion limit. You’d like to eliminate the
recursion, but keep the programming style of the visitor pattern.

Solution

Clever use of generators can sometimes be used to eliminate recursion from algorithms
involving tree traversal or searching. In Recipe 8.21, a visitor class was presented. Here
is an alternative implementation of that class that drives the computation in an entirely
different way using a stack and generators:

import types

class Node:
pass

import types
class NodeVisitor:
def visit(self, node):
stack = [node]
last_result = None
while stack:
try:
last = stack[-1]
if isinstance(last, types.GeneratorType):
stack.append(last.send(last_result))
last_result = None
elif isinstance(last, Node):
stack.append(self._visit(stack.pop()))
else:
last_result = stack.pop()
except StopIteration:
stack.pop()
return last_result

8.22. Implementing the Visitor Pattern Without Recursion | 311

def _visit(self, node):
methname = 'visit_' + type(node).__name__
meth = getattr(self, methname, None)
if meth is None:
meth = self.generic_visit
return meth(node)

def generic_visit(self, node):
raise RuntimeError('No {} method'.format('visit_' + type(node).__name__))

If you use this class, you'll find that it still works with existing code that might have used
recursion. In fact, you can use it as a drop-in replacement for the visitor implementation
in the prior recipe. For example, consider the following code, which involves expression
trees:

class UnaryOperator(Node):
def __init__(self, operand):
self.operand = operand

class BinaryOperator(Node):
def __init__(self, left, right):
self.left = left
self.right = right

class Add(BinaryOperator):
pass

class Sub(BinaryOperator):
pass

class Mul(BinaryOperator):
pass

class Div(BinaryOperator):
pass

class Negate(UnaryOperator):
pass

class Number(Node):
def __init__ (self, value):
self.value = value

A sample visitor class that evaluates expressions
class Evaluator(NodeVisitor):
def visit_Number(self, node):
return node.value

def visit_Add(self, node):
return self.visit(node.left) + self.visit(node.right)

312 | (Chapter8: Classes and Objects

def visit_Sub(self, node):
return self.visit(node.left) - self.visit(node.right)

def visit_Mul(self, node):
return self.visit(node.left) * self.visit(node.right)

def visit_Div(self, node):
return self.visit(node.left) / self.visit(node.right)

def visit_Negate(self, node):
return -self.visit(node.operand)
if __name__ == '__main__
1+ 2%(3-4) / 5
tl = Sub(Number(3), Number(4))
t2 = Mul(Number(2), t1)
t3 = Div(t2, Number(5))
t4 = Add(Number(1), t3)

Evaluate it
e = Evaluator()
print(e.visit(t4)) # Outputs 0.6

The preceding code works for simple expressions. However, the implementation of
Evaluator uses recursion and crashes if things get too nested. For example:

>>> a = Number(0)
>>> for n in range(1, 100000):
a = Add(a, Number(n))

>>> e = Evaluator()
>>> e.visit(a)

File "visitor.py", line 29, in _visit
return meth(node)
File "visitor.py", line 67, in visit_Add
return self.visit(node.left) + self.visit(node.right)
RuntimeError: maximum recursion depth exceeded
>>>

Now let’s change the Evaluator class ever so slightly to the following:

class Evaluator(NodeVisitor):
def visit_Number(self, node):
return node.value

def visit_Add(self, node):
yield (yield node.left) + (yield node.right)

def visit_Sub(self, node):
yield (yield node.left) - (yield node.right)

8.22. Implementing the Visitor Pattern Without Recursion | 313

def visit_Mul(self, node):
yield (yield node.left) * (yield node.right)

def visit_Div(self, node):
yield (yield node.left) / (yield node.right)

def visit_Negate(self, node):
yield -(yield node.operand)

If you try the same recursive experiment, you'll find that it suddenly works. It’s magic!

>>> a = Number(0)
>>> for n in range(1,100000):
a = Add(a, Number(n))

>>> e = Evaluator()
>>> e.visit(a)
4999950000

>>>
Ifyouwant to add custom processing into any of the methods, it still works. For example:

class Evaluator(NodeVisitor):

def visit_Add(self, node):
print('Add: ', node)
lhs = yield node.left
print('left=", 1lhs)
rhs = yield node.right
print('right=', rhs)
yield lhs + rhs

Here is some sample output:

>>> e = Evaluator()

>>> e.visit(t4)

Add: <__main__.Add object at 0x1006a8d90>
left= 1

right= -0.4

0.6

>>>

Discussion

This recipe nicely illustrates how generators and coroutines can perform mind-bending
tricks involving program control flow, often to great advantage. To understand this
recipe, a few key insights are required.

First, in problems related to tree traversal, a common implementation strategy for
avoiding recursion is to write algorithms involving a stack or queue. For example, depth-
first traversal can be implemented entirely by pushing nodes onto a stack when first
encountered and then popping them off once processing has finished. The central core

314 | Chapter8: Classes and Objects

of the visit() method in the solution is built around this idea. The algorithm starts by
pushing the initial node onto the stack list and runs until the stack is empty. During
execution, the stack will grow according to the depth of the underlying tree structure.

The second insight concerns the behavior of the yield statement in generators. When
yileldis encountered, the behavior of a generator is to emit a value and to suspend. This
recipe uses this as a replacement for recursion. For example, instead of writing a recur-
sive expression like this:

value = self.visit(node.left)
you replace it with the following:
value = yield node.left

Behind the scenes, this sends the node in question (node.left) back to the visit()
method. The visit() method then carries out the execution of the appropriate vis
1t_Name() method for that node. In some sense, this is almost the opposite of recursion.
That is, instead of calling visit() recursively to move the algorithm forward, the yield
statement is being used to temporarily back out of the computation in progress. Thus,
the yield is essentially a signal that tells the algorithm that the yielded node needs to
be processed first before further progress can be made.

The final part of this recipe concerns propagation of results. When generator functions
are used, you can no longer use return statements to emit values (doing so will cause
a SyntaxError exception). Thus, the yield statement has to do double duty to cover
the case. In this recipe, if the value produced by a yield statement is a non-Node type,
it is assumed to be a value that will be propagated to the next step of the calculation.
This is the purpose of the last_return variable in the code. Typically, this would hold
the last value yielded by a visit method. That value would then be sent into the previously
executing method, where it would show up as the return value from a yield statement.
For example, in this code:

value = yield node.left

The value variable gets the value of last_return, which is the result returned by the
visitor method invoked for node. left.

All of these aspects of the recipe are found in this fragment of code:

try:

last = stack[-1]

if isinstance(last, types.GeneratorType):
stack.append(last.send(last_result))
last_result = None

elif isinstance(last, Node):
stack.append(self._visit(stack.pop()))

else:
last_result = stack.pop()

8.22. Implementing the Visitor Pattern Without Recursion | 315

except StopIteration:
stack.pop()
The code works by simply looking at the top of the stack and deciding what to do next.
If it’s a generator, then its send() method is invoked with the last result (if any) and the
result appended onto the stack for further processing. The value returned by send() is
the same value that was given to the yield statement. Thus, in a statement such as yield
node. left, the Node instance node. left is returned by send() and placed on the top
of the stack.

If the top of the stack is a Node instance, then it is replaced by the result of calling the
appropriate visit method for that node. This is where the underlying recursion is being
eliminated. Instead of the various visit methods directly calling visit() recursively, it
takes place here. As long as the methods use yield, it all works out.

Finally, if the top of the stack is anything else, it's assumed to be a return value of some
kind. It just gets popped off the stack and placed into last_result. If the next item on
the stack is a generator, then it gets sent in as a return value for the yield. It should be
noted that the final return value of visit() is also set to last_result. This is what
makes this recipe work with a traditional recursive implementation. If no generators
are being used, this value simply holds the value given to any return statements used
in the code.

One potential danger of this recipe concerns the distinction between yielding Node and
non-Node values. In the implementation, all Node instances are automatically traversed.
This means that you can’t use a Node as a return value to be propagated. In practice, this
may not matter. However, if it does, you might need to adapt the algorithm slightly. For
example, possibly by introducing another class into the mix, like this:

class Visit:
def __init_ (self, node):
self.node = node

class NodeVisitor:
def visit(self, node):
stack = [Visit(node)]
last_result = None
while stack:
try:
last = stack[-1]
if isinstance(last, types.GeneratorType):
stack.append(last.send(last_result))
last_result = None
elif isinstance(last, Visit):
stack.append(self._visit(stack.pop().node))
else:
last_result = stack.pop()
except StopIteration:

316 | Chapter8: Classes and Objects

stack.pop()
return last_result

def _visit(self, node):
methname = 'visit_' + type(node).__name__
meth = getattr(self, methname, None)
if meth is None:
meth = self.generic_visit
return meth(node)

def generic_visit(self, node):
raise RuntimeError('No {} method'.format('visit_' + type(node).__name__))

With this implementation, the various visitor methods would now look like this:

class Evaluator(NodeVisitor):

def visit_Add(self, node):
yield (yield Visit(node.left)) + (yield Visit(node.right))

def visit_Sub(self, node):
yield (yield Visit(node.left)) - (yield Visit(node.right))

Having seen this recipe, you might be inclined to investigate a solution that doesn’t
involve yield. However, doing so will lead to code that has to deal with many of the
same issues presented here. For example, to eliminate recursion, you’ll need to maintain
a stack. You'll also need to come up with some scheme for managing the traversal and
invoking various visitor-related logic. Without generators, this code ends up being a
very messy mix of stack manipulation, callback functions, and other constructs. Frankly,
the main benefit of using yield is that you can write nonrecursive code in an elegant
style that looks almost exactly like the recursive implementation.

8.23. Managing Memory in Cyclic Data Structures

Problem

Your program creates data structures with cycles (e.g., trees, graphs, observer patterns,
etc.), but you are experiencing problems with memory management.

Solution

A simple example of a cyclic data structure is a tree structure where a parent points to
its children and the children point back to their parent. For code like this, you should
consider making one of the links a weak reference using the weakref library. For
example:

8.23. Managing Memory in Cyclic Data Structures | 317

import weakref

class Node:

def __init__ (self, value):
self.value = value
self._parent = None
self.children = []

def __repr__(self):
return 'Node({!r:})'.format(self.value)

property that manages the parent as a weak-reference

def parent(self):
return self._parent if self._parent is None else self._parent()

def parent(self, node):
self._parent = weakref.ref(node)

def add_child(self, child):
self.children.append(child)
child.parent = self

This implementation allows the parent to quietly die. For example:

>>>
>>>
>>>
>>>

root = Node('parent')
cl = Node('child')
root.add_child(c1)
print(cl.parent)

Node('parent')

>>>
>>>

del root
print(cl.parent)

None

>>>

Discussion

Cyclic data structures are a somewhat tricky aspect of Python that require careful study
because the usual rules of garbage collection often don’t apply. For example, consider
this code:

Class just to illustrate when deletion occurs
class Data:

def __del__(self):
print('Data.__del__")

Node class involving a cycle
class Node:

def __init__ (self):
self.data = Data()
self.parent = None

318 |

Chapter 8: Classes and Objects

self.children = []

def add_child(self, child):
self.children.append(child)
child.parent = self

Now, using this code, try some experiments to see some subtle issues with garbage
collection:

>>> a = Data()

>>> del a # Immediately deleted
Data.__del__

>>> a = Node()

>>> del a # Immediately deleted
Data.__del__

>>> a = Node()

>>> a.add_child(Node())

>>> del a # Not deleted (no message)
>>>

As you can see, objects are deleted immediately all except for the last case involving a
cycle. The reason is that Python’s garbage collection is based on simple reference count-
ing. When the reference count of an object reaches 0, it is immediately deleted. For
cyclic data structures, however, this never happens. Thus, in the last part of the example,
the parent and child nodes refer to each other, keeping the reference count nonzero.

To deal with cycles, there is a separate garbage collector that runs periodically. However,
as a general rule, you never know when it might run. Consequently, you never really
know when cyclic data structures might get collected. If necessary, you can force garbage
collection, but doing so is a bit clunky:

>>> import gc

>>> gc.collect() # Force collection
Data.__del__
Data.__del__

>>>

An even worse problem occurs if the objects involved in a cycle define their own
__del__() method. For example, suppose the code looked like this:

Class just to illustrate when deletion occurs
class Data:
def __del__(self):
print('Data.__del__")

Node class involving a cycle
class Node:
def __init__(self):
self.data = Data()
self.parent = None
self.children = []

NEVER DEFINE LIKE THIS.

8.23. Managing Memory in Cyclic Data Structures | 319

Only here to illustrate pathological behavior
def __del_(self):

del self.data

del.parent

del.children

def add_child(self, child):
self.children.append(child)
child.parent = self
In this case, the data structures will never be garbage collected at all and your program
will leak memory! If you try it, you'll see that the Data.__del__ message never appears
at all—even after a forced garbage collection:

>>> a = Node()
>>> a.add_child(Node()

>>> del a # No message (not collected)
>>> import gc
>>> gc.collect() # No message (not collected)

>>>

Weak references solve this problem by eliminating reference cycles. Essentially, a weak
reference is a pointer to an object that does not increase its reference count. You create
weak references using the weakref library. For example:

>>> import weakref

>>> a = Node()

>>> a_ref = weakref.ref(a)

>>> a_ref

<weakref at 0x100581f70; to 'Node' at 0x1005c5410>

>>>

To dereference a weak reference, you call it like a function. If the referenced object still
exists, it is returned. Otherwise, None is returned. Since the reference count of the orig-
inal object wasn’t increased, it can be deleted normally. For example:

>>> print(a_ref())

<__main__.Node object at 0x1005c5410>
>>> del a

Data.__del__

>>> print(a_ref())

None

>>>

By using weak references, as shown in the solution, you’ll find that there are no longer
any reference cycles and that garbage collection occurs immediately once a node is no
longer being used. See Recipe 8.25 for another example involving weak references.

320 | Chapter8: Classes and Objects

8.24. Making Classes Support Comparison Operations

Problem

You'd like to be able to compare instances of your class using the standard comparison
operators (e.g., >=, !=, <=, etc.), but without having to write a lot of special methods.
Solution

Python classes can support comparison by implementing a special method for each
comparison operator. For example, to support the >= operator, you definea __ge__()
method in the classes. Although defining a single method is usually no problem, it
quickly gets tedious to create implementations of every possible comparison operator.

The functools. total_ordering decorator can be used to simplify this process. To use
it, you decorate a class with it, and define __eq__() and one other comparison method
(__lt__,__le__,__gt__,or__ge__). The decorator then fills in the other comparison
methods for you.

As an example, let’s build some houses and add some rooms to them, and then perform
comparisons based on the size of the houses:

from functools import total_ordering
class Room:
def __init__(self, name, length, width):
self.name = name
self.length = length
self.width = width
self.square_feet = self.length * self.width

class House:
def __init__(self, name, style):
self.name = name
self.style = style
self.rooms = list()

def living_space_footage(self):
return sum(r.square_feet for r in self.rooms)

def add_room(self, room):
self.rooms.append(room)

def __str__ (self):
return '{}: {} square foot {}'.format(self.name,
self.living_space_footage,
self.style)

8.24. Making Classes Support Comparison Operations | 321

def __eq__ (self, other):
return self.living_space_footage == other.living_space_footage

def __1t_ (self, other):
return self.living_space_footage < other.living_space_footage

Here, the House class has been decorated with @total_ordering. Definitions of

——€q__

() and __1t__() are provided to compare houses based on the total square

footage of their rooms. This minimum definition is all that is required to make all of
the other comparison operations work. For example:

Build a few houses, and add rooms to them

h1i

hi.
h1.
hi.
h1.

h2
h2

h3

h3.
h3.
h3.
h3.

= House('h1', 'Cape')
add_room(Room('Master Bedroom', 14, 21))
add_room(Room('Living Room', 18, 20))
add_room(Room('Kitchen', 12, 16))
add_room(Room('0ffice', 12, 12))

= House('h2', 'Ranch')

.add_room(Room('Master Bedroom', 14, 21))
h2.
h2.

add_room(Room('Living Room', 18, 20))
add_room(Room('Kitchen', 12, 16))

= House('h3', 'Split')

add_room(Room('Master Bedroom', 14, 21))
add_room(Room('Living Room', 18, 20))
add_room(Room('0Office', 12, 16))
add_room(Room('Kitchen', 15, 17))

houses = [h1, h2, h3]

print('Is h1l bigger than h2?', hl > h2) # prints True

print('Is h2 smaller than h3?', h2 < h3) # prints True

print('Is h2 greater than or equal to h1?', h2 >= h1l) # Prints False
print('Which one is biggest?', max(houses)) # Prints 'h3: 1101-square-foot Split'
print('Which is smallest?', min(houses)) # Prints 'h2: 846-square-foot Ranch'

Discussion

If you've written the code to make a class support all of the basic comparison operators,
then total_ordering probably doesn’t seem all that magical: it literally defines a map-
ping from each of the comparison-supporting methods to all of the other ones that
would be required. So, if you defined __1t__() in your class as in the solution, it is used
to build all of the other comparison operators. It’s really just filling in the class with
methods like this:

class House:

def __eq_ (self, other):

def __ 1t (self, other):

3 |

Chapter 8: Classes and Objects

Methods created by @total_ordering

__le__ = lambda self, other: self < other or self == other
__gt__ = lambda self, other: not (self < other or self == other)
__ge__ = lambda self, other: not (self < other)

_ne__ = lambda self, other: not self == other

Sure, it’s not hard to write these methods yourself, but @total_ordering simply takes
the guesswork out of it.

8.25. Creating Cached Instances

Problem

When creating instances of a class, you want to return a cached reference to a previous
instance created with the same arguments (if any).

Solution

The problem being addressed in this recipe sometimes arises when you want to ensure
that there is only one instance of a class created for a set of input arguments. Practical
examples include the behavior of libraries, such as the logging module, that only want
to associate a single logger instance with a given name. For example:

>>> import logging

>>> a = logging.getlLogger('foo")
>>> b = logging.getlLogger('bar')
>>> ais b

False

>>> ¢ = logging.getlLogger('foo")
>>> a is C

True

>>>

To implement this behavior, you should make use of a factory function that’s separate
from the class itself. For example:

The class in question
class Spam:
def __init__(self, name):
self.name = name

Caching support
import weakref
_spam_cache = weakref.WeakValueDictionary()

def get_spam(name):
if name not in _spam_cache:
s = Spam(name)
_spam_cache[name] = s
else:

8.25. Creating Cached Instances | 323

s = _spam_cache[name]
return s

If you use this implementation, you’ll find that it behaves in the manner shown earlier:

>>> a = get_spam('foo')
>>> b = get_spam('bar')
>>> ais b

False

>>> ¢ = get_spam('foo')
>>> a is ¢

True

>>>

Discussion

Writing a special factory function is often a simple approach for altering the normal
rules of instance creation. One question that often arises at this point is whether or not
a more elegant approach could be taken.

For example, you might consider a solution that redefines the __new__() method of a
class as follows:

Note: This code doesn't quite work
import weakref

class Spam:
_spam_cache = weakref.WeakValueDictionary()
def __new__ (cls, name):
if name in cls._spam_cache:
return cls._spam_cache[name]
else:
self = super().__new__(cls)
cls._spam_cache[name] = self
return self

def __init__(self, name):
print('Initializing Spam')
self.name = name

At first glance, it seems like this code might do the job. However, a major problem is
that the __init__() method always gets called, regardless of whether the instance was
cached or not. For example:

>>> s = Spam('Dave')
Initializing Spam
>>> t = Spam('Dave')
Initializing Spam
>>> s is t

True

>>>

324

| Chapter 8: Classes and Objects

Thatbehavior is probably not what you want. So, to solve the problem of caching without
reinitialization, you need to take a slightly different approach.

The use of weak references in this recipe serves an important purpose related to garbage
collection, as described in Recipe 8.23. When maintaining a cache of instances, you
often only want to keep items in the cache as long as they’re actually being used some-
where in the program. A WeakValueDictionary instance only holds onto the referenced
items as long as they exist somewhere else. Otherwise, the dictionary keys disappear
when instances are no longer being used. Observe:

>>> a = get_spam('foo')
>>> b = get_spam('bar')
>>> ¢ = get_spam('foo')
>>> list(_spam_cache)
['foo', 'bar'l]

>>> del a

>>> del ¢

>>> list(_spam_cache)
['bar']

>>> del b

>>> list(_spam_cache)

(]

>>>

For many programs, the bare-bones code shown in this recipe will often suftice. How-
ever, there are a number of more advanced implementation techniques that can be
considered.

One immediate concern with this recipe might be its reliance on global variables and a
factory function that’s decoupled from the original class definition. One way to clean
this up is to put the caching code into a separate manager class and glue things together
like this:

import weakref

class CachedSpamManager:
def __init__(self):
self._cache = weakref.WeakValueDictionary()
def get_spam(self, name):
if name not in self._cache:
s = Spam(name)
self._cache[name] = s
else:
s = self._cache[name]
return s

def clear(self):
self._cache.clear()

class Spam:
manager = CachedSpamManager()

8.25. Creating Cached Instances | 325

def __init_ (self, name):
self.name = name

def get_spam(name):
return Spam.manager.get_spam(name)
One feature of this approach is that it affords a greater degree of potential flexibility. For
example, different kinds of management schemes could be be implemented (as separate
classes) and attached to the Spam class as a replacement for the default caching imple-
mentation. None of the other code (e.g., get_spam) would need to be changed to make
it work.

Another design consideration is whether or not you want to leave the class definition
exposed to the user. If you do nothing, a user can easily make instances, bypassing the
caching mechanism:

>>> a = Spam('foo')
>>> b = Spam('foo')
>>> ais b

False

>>>

If preventing this is important, you can take certain steps to avoid it. For example, you

might give the class a name starting with an underscore, such as _Spam, which at least
gives the user a clue that they shouldn’t access it directly.

Alternatively, if you want to give users a stronger hint that they shouldn’t instantiate
Spam instances directly, you can make __init__() raise an exception and use a class
method to make an alternate constructor like this:

class Spam:
def __init__(self, *args, **kwargs):
raise RuntimeError("Can't instantiate directly")

Alternate constructor

def _new(cls, name):
self = cls.__new__(cls)
self.name = name

To use this, you modify the caching code to use Spam._new() to create instances instead
of the usual call to Spam(). For example:

import weakref

class CachedSpamManager:
def __init__(self):
self._cache = weakref.WeakValueDictionary()
def get_spam(self, name):
if name not in self._cache:
s = Spam._new(name) # Modified creation

326 | Chapter8: Classes and Objects

self._cache[name] = s
else:
s = self._cache[name]
return s
Although there are more extreme measures that can be taken to hide the visibility of
the Spam class, it’s probably best to not overthink the problem. Using an underscore on
the name or defining a class method constructor is usually enough for programmers to
get a hint.

Caching and other creational patterns can often be solved in a more elegant (albeit
advanced) manner through the use of metaclasses. See Recipe 9.13.

8.25. Creating Cached Instances | 327

CHAPTER 9
Metaprogramming

One of the most important mantras of software development is “don’t repeat yourself”
That is, any time you are faced with a problem of creating highly repetitive code (or
cutting or pasting source code), it often pays to look for a more elegant solution. In
Python, such problems are often solved under the category of “metaprogramming.” In
a nutshell, metaprogramming is about creating functions and classes whose main goal
is to manipulate code (e.g., modifying, generating, or wrapping existing code). The main
features for this include decorators, class decorators, and metaclasses. However, a variety
of other useful topics—including signature objects, execution of code with exec(), and
inspecting the internals of functions and classes—enter the picture. The main purpose
of this chapter is to explore various metaprogramming techniques and to give examples
of how they can be used to customize the behavior of Python to your own whims.

9.1. Putting a Wrapper Around a Function

Problem

You want to put a wrapper layer around a function that adds extra processing (e.g.,
logging, timing, etc.).

Solution

If you ever need to wrap a function with extra code, define a decorator function. For
example:

import time
from functools import wraps

def timethis(func):

rr

Decorator that reports the execution time.

329

(func)

def wrapper(*args, **kwargs):
start = time.time()
result = func(*args, **kwargs)
end = time.time()
print(func.__name__, end-start)
return result

return wrapper

Here is an example of using the decorator:

>>>

... def countdown(n):
v Counts down
v while n > 0:
e n-=1

>>> countdown(100000)
countdown 0.008917808532714844
>>> countdown(10000000)
countdown 0.87188299392912

>>>

Discussion

A decorator is a function that accepts a function as input and returns a new function as
output. Whenever you write code like this:

def countdown(n):

it’s the same as if you had performed these separate steps:
def countdown(n):

countdown = timethis(countdown)

As an aside, built-in decorators such as @staticmethod, @classmethod, and @proper
ty work in the same way. For example, these two code fragments are equivalent:

class A:

def method(cls):
pass

class B:
Equivalent definition of a class method
def method(cls):

330 | Chapter9: Metaprogramming

pass
method = classmethod(method)

The code inside a decorator typically involves creating a new function that accepts any
arguments using *args and **kwargs, as shown with the wrapper() function in this
recipe. Inside this function, you place a call to the original input function and return its
result. However, you also place whatever extra code you want to add (e.g., timing). The
newly created function wrapper is returned as a result and takes the place of the original
function.

It’s critical to emphasize that decorators generally do not alter the calling signature or
return value of the function being wrapped. The use of *args and **kwargs is there to
make sure that any input arguments can be accepted. The return value of a decorator is
almost always the result of calling func(*args, **kwargs), where func is the original
unwrapped function.

When first learning about decorators, it is usually very easy to get started with some
simple examples, such as the one shown. However, if you are going to write decorators
for real, there are some subtle details to consider. For example, the use of the decorator
@wraps(func) in the solution is an easy to forget but important technicality related to
preserving function metadata, which is described in the next recipe. The next few recipes
that follow fill in some details that will be important if you wish to write decorator
functions of your own.

9.2. Preserving Function Metadata When Writing
Decorators

Problem

You've written a decorator, but when you apply it to a function, important metadata
such as the name, doc string, annotations, and calling signature are lost.

Solution

Whenever you define a decorator, you should always remember to apply the @wraps
decorator from the functools library to the underlying wrapper function. For example:

import time
from functools import wraps

def timethis(func):

o

Decorator that reports the execution time.

o

(func)
def wrapper(*args, **kwargs):

9.2. Preserving Function Metadata When Writing Decorators | 331

start = time.time()
result = func(*args, **kwargs)
end = time.time()
print(func.__name__, end-start)
return result

return wrapper

Here is an example of using the decorator and examining the resulting function meta-
data:

>>>
... def countdown(n:int):

e

Counts down

e

while n > 0:
n-=1

>>> countdown(100000)
countdown 0.008917808532714844
>>> countdown.__name__
'countdown'

>>> countdown.__doc__
"\n\tCounts down\n\t'

>>> countdown.__annotations__
{'n': <class 'int'>}

>>>

Discussion

Copying decorator metadata is an important part of writing decorators. If you forget to
use @wraps, you'll find that the decorated function loses all sorts of useful information.
For instance, if omitted, the metadata in the last example would look like this:

>>> countdown.__name__
'wrapper'

>>> countdown.__doc__

>>> countdown.__annotations__

{3

>>>
An important feature of the @wraps decorator is that it makes the wrapped function
available to you in the __wrapped__ attribute. For example, if you want to access the
wrapped function directly, you could do this:

>>> countdown.__wrapped__(100000)

>>>
The presence of the __wrapped__ attribute also makes decorated functions properly
expose the underlying signature of the wrapped function. For example:

332 | Chapter9: Metaprogramming

>>> from inspect import signature

>>> print(signature(countdown))

(n:int)

>>>
One common question that sometimes arises is how to make a decorator that directly
copies the calling signature of the original function being wrapped (as opposed to using
*args and **kwargs). In general, this is difficult to implement without resorting to some
trick involving the generator of code strings and exec(). Frankly, you're usually best off
using @wraps and relying on the fact that the underlying function signature can be
propagated by access to the underlying __wrapped__ attribute. See Recipe 9.16 for more
information about signatures.

9.3. Unwrapping a Decorator

Problem

A decorator has been applied to a function, but you want to “undo” it, gaining access to
the original unwrapped function.

Solution

Assuming that the decorator has been implemented properly using @wraps (see
Recipe 9.2), you can usually gain access to the original function by accessing the __wrap
ped__ attribute. For example:

>>>
>>> def add(x, y):
return x +y

>>> orig_add = add.__wrapped__
>>> orig_add(3, 4)
7

>>>

Discussion

Gaining direct access to the unwrapped function behind a decorator can be useful for
debugging, introspection, and other operations involving functions. However, this
recipe only works if the implementation of a decorator properly copies metadata using
@wraps from the functools module or sets the __wrapped__ attribute directly.

If multiple decorators have been applied to a function, the behavior of accessing __wrap
ped__is currently undefined and should probably be avoided. In Python 3.3, it bypasses
all of the layers. For example, suppose you have code like this:

9.3. Unwrapping a Decorator | 333

from functools import wraps

def decoratori(func):
(func)
def wrapper(*args, **kwargs):
print('Decorator 1')
return func(*args, **kwargs)
return wrapper

def decorator2(func):
(func)
def wrapper(*args, **kwargs):
print('Decorator 2')
return func(*args, **kwargs)
return wrapper

def add(x, y):
return x +y

Here is what happens when you call the decorated function and the original function
through __wrapped__:

>>> add(2, 3)

Decorator 1

Decorator 2

5

>>> add.__wrapped__(2, 3)

5

>>>
However, this behavior has been reported as a bug (see http://bugs.python.org/
issuel7482) and may be changed to explose the proper decorator chain in a future re-
lease.

Last, but not least, be aware that not all decorators utilize @wraps, and thus, they may
not work as described. In particular, the built-in decorators @staticmethod and @class
method create descriptor objects that don’t follow this convention (instead, they store
the original function in a __func__ attribute). Your mileage may vary.

9.4. Defining a Decorator That Takes Arguments

Problem

You want to write a decorator function that takes arguments.

334 | Chapter9: Metaprogramming

http://bugs.python.org/issue17482
http://bugs.python.org/issue17482

Solution

Let’s illustrate the process of accepting arguments with an example. Suppose you want
to write a decorator that adds logging to a function, but allows the user to specify the
logginglevel and other details as arguments. Here is how you might define the decorator:

from functools import wraps
import logging

def logged(level, name=None, message=None):
Add logging to a function. level is the logging
level, name is the logger name, and message is the
log message. If name and message aren't specified,
they default to the function's module and name.

[N

def decorate(func):
logname = name if name else func.__module__
log = logging.getlLogger(logname)
logmsg = message if message else func.__name__

(func)
def wrapper(*args, **kwargs):
log.log(level, logmsg)
return func(*args, **kwargs)
return wrapper
return decorate

Example use
(logging.DEBUG)
def add(x, y):
return x +y

(logging.CRITICAL, 'example')
def spam():
print('Spam!")
On first glance, the implementation looks tricky, but the idea is relatively simple. The
outermost function logged() accepts the desired arguments and simply makes them
available to the inner functions of the decorator. The inner function decorate() accepts
a function and puts a wrapper around it as normal. The key part is that the wrapper is
allowed to use the arguments passed to logged().

Discussion

Writing a decorator that takes arguments is tricky because of the underlying calling
sequence involved. Specifically, if you have code like this:

(x, ¥, 2)
def func(a, b):
pass

9.4. Defining a Decorator That Takes Arguments | 335

The decoration process evaluates as follows:

def func(a, b):
pass

func = decorator(x, y, z)(func)

Carefully observe that the result of decorator(x, y, z) must be a callable which, in
turn, takes a function as input and wraps it. See Recipe 9.7 for another example of a
decorator taking arguments.

9.5. Defining a Decorator with User Adjustable Attributes

Problem

You want to write a decorator function that wraps a function, but has user adjustable
attributes that can be used to control the behavior of the decorator at runtime.

Solution

Here is a solution that expands on the last recipe by introducing accessor functions that
change internal variables through the use of nonlocal variable declarations. The ac-
cessor functions are then attached to the wrapper function as function attributes.

from functools import wraps, partial
import logging

Utility decorator to attach a function as an attribute of obj
def attach_wrapper(obj, func=None):
if func is None:
return partial(attach_wrapper, obj)
setattr(obj, func.__name__, func)
return func

def logged(level, name=None, message=None):
Add logging to a function. level is the logging
level, name is the logger name, and message is the
log message. If name and message aren't specified,
they default to the function's module and name.
def decorate(func):
logname = name if name else func.__module__
log = logging.getLogger(logname)
logmsg = message if message else func.__name__

(func)
def wrapper(*args, **kwargs):
log.log(level, logmsg)
return func(*args, **kwargs)

336 | Chapter9: Metaprogramming

Attach setter functions
(wrapper)
def set_level(newlevel):
nonlocal level
level = newlevel

(wrapper)
def set_message(newmsg):
nonlocal logmsg
logmsg = newmsg

return wrapper
return decorate

Example use
(logging.DEBUG)
def add(x, y):
return x + y

(logging.CRITICAL, 'example')
def spam():
print('Spam!')

Here is an interactive session that shows the various attributes being changed after
definition:

>>> import logging

>>> logging.basicConfig(level=1logging.DEBUG)
>>> add(2, 3)

DEBUG:__main__:add

5

>>> # Change the log message

>>> add.set_message('Add called')
>>> add(2, 3)

DEBUG:__main__:Add called

5

>>> # Change the log level

>>> add.set_level(logging.WARNING)
>>> add(2, 3)

WARNING:__main__:Add called

5

>>>

9.5. Defining a Decorator with User Adjustable Attributes | 337

Discussion

The key to this recipe lies in the accessor functions [e.g., set_message() and set_lev
el()] that get attached to the wrapper as attributes. Each of these accessors allows in-
ternal parameters to be adjusted through the use of nonlocal assignments.

An amazing feature of this recipe is that the accessor functions will propagate through
multiple levels of decoration (if all of your decorators utilize @functools.wraps). For
example, suppose you introduced an additional decorator, such as the @timethis dec-
orator from Recipe 9.2, and wrote code like this:

(logging.DEBUG)
def countdown(n):
while n > 0:
n-=1

You'll find that the accessor methods still work:

>>> countdown(10000000)

DEBUG:__main__:countdown

countdown 0.8198461532592773

>>> countdown.set_level(logging.WARNING)

>>> countdown.set_message("Counting down to zero")
>>> countdown(10000000)

WARNING:__main__:Counting down to zero

countdown 0.8225970268249512

>>>

You'll also find that it all still works exactly the same way if the decorators are composed
in the opposite order, like this:

(logging.DEBUG)

def countdown(n):
while n > 0:
n-=1

Although it’s not shown, accessor functions to return the value of various settings could
also be written just as easily by adding extra code such as this:

(wrapper)
def get_level():
return level

Alternative
wrapper.get_level = lambda: level

338 | Chapter9: Metaprogramming

One extremely subtle facet of this recipe is the choice to use accessor functions in the
first place. For example, you might consider an alternative formulation solely based on
direct access to function attributes like this:

(func)
def wrapper(*args, **kwargs):
wrapper.log.log(wrapper.level, wrapper.logmsg)
return func(*args, **kwargs)

Attach adjustable attributes
wrapper.level = level
wrapper.logmsg = logmsg
wrapper.log = log

This approach would work to a point, but only if it was the topmost decorator. If you
had another decorator applied on top (such as the @timethis example), it would shadow
the underlying attributes and make them unavailable for modification. The use of ac-
cessor functions avoids this limitation.

Last, but not least, the solution shown in this recipe might be a possible alternative for
decorators defined as classes, as shown in Recipe 9.9.

9.6. Defining a Decorator That Takes an Optional
Argument

Problem

You would like to write a single decorator that can be used without arguments, such as
@decorator, or with optional arguments, such as @decorator(x,y,z). However, there
seems to be no straightforward way to do it due to differences in calling conventions
between simple decorators and decorators taking arguments.

Solution
Here is a variant of the logging code shown in Recipe 9.5 that defines such a decorator:

from functools import wraps, partial
import logging

def logged(func=None, *, level=logging.DEBUG, name=None, message=None):
if func is None:
return partial(logged, level=level, name=name, message=message)

logname = name if name else func.__module__
log = logging.getLogger(logname)
logmsg = message if message else func.__name__

9.6. Defining a Decorator That Takes an Optional Argument | 339

(func)
def wrapper(*args, **kwargs):
log.log(level, logmsg)
return func(*args, **kwargs)
return wrapper

Example use

def add(x, y):
return x +y

(level=1logging.CRITICAL, name='example')
def spam():
print('Spam!"')
Asyou can see from the example, the decorator can be used in both a simple form (i.e.,
@logged) or with optional arguments supplied (i.e., @Logged(level=logging.CRITI
CAL, name='example')).

Discussion

The problem addressed by this recipe is really one of programming consistency. When
using decorators, most programmers are used to applying them without any arguments
at all or with arguments, as shown in the example. Technically speaking, a decorator
where all arguments are optional could be applied, like this:

O
def add(x, y):
return x+y
However, this is not a form that’s especially common, and might lead to common usage
errors if programmers forget to add the extra parentheses. The recipe simply makes the
decorator work with or without parentheses in a consistent way.

To understand how the code works, you need to have a firm understanding of how
decorators get applied to functions and their calling conventions. For a simple decorator
such as this:

Example use

def add(x, y):
return x +y

The calling sequence is as follows:

def add(x, y):
return x +y
add = logged(add)

340 | Chapter9: Metaprogramming

In this case, the function to be wrapped is simply passed to logged as the first argument.
Thus, in the solution, the first argument of logged() is the function being wrapped. All
of the other arguments must have default values.

For a decorator taking arguments such as this:

(level=1logging.CRITICAL, name='example')
def spam():
print('Spam!"')

The calling sequence is as follows:

def spam():
print('Spam!')

spam = logged(level=1logging.CRITICAL, name='example')(spam)
On the initial invocation of logged(), the function to be wrapped is not passed. Thus,
in the decorator, it has to be optional. This, in turn, forces the other arguments to be
specified by keyword. Furthermore, when arguments are passed, a decorator is supposed
to return a function that accepts the function and wraps it (see Recipe 9.5). To do this,
the solution uses a clever trick involving functools.partial. Specifically, it simply
returns a partially applied version of itself where all arguments are fixed except for the
function to be wrapped. See Recipe 7.8 for more details about using partial().

9.7. Enforcing Type Checking on a Function Using a
Decorator

Problem

You want to optionally enforce type checking of function arguments as a kind of asser-
tion or contract.

Solution

Before showing the solution code, the aim of this recipe is to have a means of enforcing
type contracts on the input arguments to a function. Here is a short example that illus-
trates the idea:

>5> (int, int)

. def add(x, y):
return x +y

>>>
>>> add(2, 3)

5

>>> add(2, 'hello')

File "<stdin>", 1ine 1, in <module>

9.7. Enforcing Type Checking on a Function Using a Decorator | 341

File "contract.py", line 33, in wrapper
TypeError: Argument y must be <class 'int's>
>>>

Now, here is an implementation of the @typeassert decorator:

from inspect import signature
from functools import wraps

def typeassert(*ty_args, **ty_kwargs):
def decorate(func):
If in optimized mode, disable type checking
if not __debug__:
return func

Map function argument names to supplied types
sig = signature(func)
bound_types = sig.bind_partial(*ty_args, **ty_kwargs).arguments

(func)
def wrapper(*args, **kwargs):
bound_values = sig.bind(*args, **kwargs)
Enforce type assertions across supplied arguments
for name, value in bound_values.arguments.items():
if name in bound_types:
if not isinstance(value, bound_types[name]):
raise TypeError(
'Argument {} must be {}'.format(name, bound_types[name])
)
return func(*args, **kwargs)
return wrapper
return decorate

You will find that this decorator is rather flexible, allowing types to be specified for all
or a subset of a function’s arguments. Moreover, types can be specified by position or
by keyword. Here is an example:

>>> (int, z=int)
... def spam(x, vy, z=42):
e print(x, y, z)

>>> spam(1l, 2, 3)

123

>>> spam(1, 'hello', 3)

1 hello 3

>>> spam(1, 'hello', 'world')

File "<stdin>", 1ine 1, in <module>

File "contract.py", line 33, in wrapper
TypeError: Argument z must be <class 'int's>
>>>

342 | Chapter9: Metaprogramming

Discussion

This recipe is an advanced decorator example that introduces a number of important
and useful concepts.

First, one aspect of decorators is that they only get applied once, at the time of function
definition. In certain cases, you may want to disable the functionality added by a dec-
orator. To do this, simply have your decorator function return the function unwrapped.
In the solution, the following code fragment returns the function unmodified if the
value of the global __debug__ variableissetto False (asisthe case when Python executes
in optimized mode with the -0 or -00 options to the interpreter):

def decorate(func):
If in optimized mode, disable type checking
if not __debug__:
return func

Next, a tricky part of writing this decorator is that it involves examining and working
with the argument signature of the function being wrapped. Your tool of choice here
should be the inspect.signature() function. Simply stated, it allows you to extract
signature information from a callable. For example:

>>> from inspect import signature
>>> def spam(x, y, z=42):
pass

>>> sig = signature(spam)

>>> print(sig)

(x, y, z=42)

>>> sig.parameters

mappingproxy(OrderedDict([('x', <Parameter at 0x10077a050 'x's>),
('y', <Parameter at 0x10077a158 'y's), ('z', <Parameter at 0x10077a1b0 'z'>)]))
>>> sig.parameters['z'].name

lzl

>>> sig.parameters['z'].default

42

>>> sig.parameters['z'].kind

<_ParameterKind: 'POSITIONAL_OR_KEYWORD'>

>>>

In the first part of our decorator, we use the bind_partial() method of signatures to
perform a partial binding of the supplied types to argument names. Here is an example
of what happens:

>>> bound_types = sig.bind_partial(int,z=int)
>>> bound_types

<inspect.BoundArguments object at ©x10069bb50>
>>> bound_types.arguments

9.7. Enforcing Type Checking